Advanced Micro I

Andrei Gomberg Spring 2023

EXERCISE 1:

1. Consider the following potential properties of a binary relation R on a set X

(i) Completeness

(ii) Transitivity

Which of the above properties is satisfied by each of the following binary relations?

a) $X = \mathbb{R}^2_+$, xRy iff (iff = if and only if) $x \ge y$

b) $X = \mathbb{R}^n_+, xRy \text{ iff } \min\{x_1, x_2, \dots, x_n\} \ge \min\{y_1, y_2, \dots, y_n\}$

c) $X = \mathbb{R}_+, xRy$ iff x > y

d) $X = \mathbb{R}^2_+, xRy$ for all $x, y \in X$

e) $X = \mathbb{R}_+, xRy$ iff $\frac{x}{5} - \left[\frac{x}{5}\right] \ge \frac{y}{5} - \left[\frac{y}{5}\right]$, where [z] (integer part of z) is the largest integer smaller than z.

f) $X = \mathbb{R}^2_+$, xRy iff either $x_1 > y_1$, or if $x_1 = y_1$ then $x_2 \ge y_2$

g) X - arbitrary, 2^X is the set of all subsets of X. For any $A,B\in 2^X$ ARB iff $A\subset B$

2. Consider the function $f: X \to Y$

$$f\left(x\right) = x^2$$

for the following X and Y determine whether it is injective, surjective or bijective.

a)
$$X = \mathbb{R}, Y = \mathbb{R}$$

b) $X = \mathbb{R}_+, Y = \mathbb{R}_+$
c) $X = \mathbb{R}, Y = \mathbb{R}_+$
d) $X = \mathbb{R}_+, Y = \mathbb{R}$

3. Show that if a binary relation R is transitive, its symmetric and asymmetric parts, I and P are also transitive.

4. (this is largely a reviw of your Eco 3 and is here to make sure you remember these functional forms well; please make sure you draw level curves) Consider the following functions $f : \mathbb{R}^2_+ \to \mathbb{R}_+$

- a) $f(x) = x_1^{\alpha} x_2^{\beta}$
- b) $f(x) = (\alpha x_1^{\rho} + \beta x_2^{\rho})^{\frac{1}{\rho}}$
- c) $f(x) = \min\{x_1, x_2\} + \alpha \max\{x_1, x_2\}$

For which values of the parameters α, β, ρ are these functions concave, convex, quasi-concave, quasi-convex? You may restrict attention to $\alpha, \beta \geq 0$.