EXERCISE 1:

1. Consider the following potential properties of a binary relation R on a set X
(i) Completeness
(ii) Transitivity

Which of the above properties is satisfied by each of the following binary relations?
a) $X=\mathbb{R}_{+}^{2}, x R y$ iff (iff $=$ if and only if) $x \geq y$
b) $X=\mathbb{R}_{+}^{n}, x R y$ iff $\min \left\{x_{1}, x_{2}, \ldots, x_{n}\right\} \geq \min \left\{y_{1}, y_{2}, \ldots ., y_{n}\right\}$
c) $X=\mathbb{R}_{+}, x R y$ iff $x>y$
d) $X=\mathbb{R}_{+}^{2}, x R y$ for all $x, y \in X$
e) $X=\mathbb{R}_{+}, x R y$ iff $\frac{x}{5}-\left[\frac{x}{5}\right] \geq \frac{y}{5}-\left[\frac{y}{5}\right]$, where $[z]$ (integer part of z) is the largest integer smaller than z.
f) $X=\mathbb{R}_{+}^{2}, x R y$ iff either $x_{1}>y_{1}$, or if $x_{1}=y_{1}$ then $x_{2} \geq y_{2}$
g) X - arbitrary, 2^{X} is the set of all subsets of X. For any $A, B \in 2^{X} A R B$ iff $A \subset B$
2. Consider the function $f: X \rightarrow Y$

$$
f(x)=x^{2}
$$

for the following X and Y determine whether it is injective, surjective or bijective.
a) $X=\mathbb{R}, Y=\mathbb{R}$
b) $X=\mathbb{R}_{+}, Y=\mathbb{R}_{+}$
c) $X=\mathbb{R}, Y=\mathbb{R}_{+}$
d) $X=\mathbb{R}_{+}, Y=\mathbb{R}$
3. Show that if a binary relation R is transitive, its symmetric and asymmetric parts, I and P are also transitive.
4. (this is largely a reviw of your Eco 3 and is here to make sure you remember these functional forms well; please make sure you draw level curves)

Consider the following functions $f: \mathbb{R}_{+}^{2} \rightarrow \mathbb{R}_{+}$
a) $f(x)=x_{1}^{\alpha} x_{2}^{\beta}$
b) $f(x)=\left(\alpha x_{1}^{\rho}+\beta x_{2}^{\rho}\right)^{\frac{1}{\rho}}$
c) $f(x)=\min \left\{x_{1}, x_{2}\right\}+\alpha \max \left\{x_{1}, x_{2}\right\}$

For which values of the parameters α, β, ρ are these functions concave, convex, quasi-concave, quasi-convex? You may restrict attention to $\alpha, \beta \geq 0$.

