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A hybrid model based on dynamic programming,
neural networks, and surrogate value for inventory
optimisation applications
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This paper proposes a new approach to minimise inventory levels and their associated costs within large geographically
dispersed organisations. For such organisations, attaining a high degree of agility is becoming increasingly important.
Linear regression-based tools have traditionally been employed to assist human experts in inventory optimisation;
endeavours; recently, Neural Network (NN) techniques have been proposed for this domain. The objective of this paper is
to create a hybrid framework that can be utilised for analysis, modelling and forecasting purposes. This framework
combines two existing approaches and introduces a new associated cost parameter that serves as a surrogate for customer
satisfaction. The use of this hybrid framework is described using a running example related to a large geographically
dispersed organisation.
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Introduction

The need for forecasting future conditions is important in a

number of disciplines. For inventory optimisation applica-

tions, the need for forecasting becomes very important if

the goods are non-durable, if the supply lead time is

signi®cantly greater than the demand lead time, if holding

and ordering costs are large, and if a high degree of

customer satisfaction is to be ensured1±10.

The research described in this paper was originally

motivated by data provided by a retail distribution company

that sells goods to organisations and individuals via a

network of warehouses and stores located across the

United States. The organisation is called `Retailcorp' in

this paper. The nature of the items distributed by Retailcorp

has a low ticket characteristic in general. This condition

means that customers are expecting to ®nd an item when

they visit the store and are not willing to wait for it, which

will result in lost sales for Retailcorp if the item cannot be

found. The notion of partial lost sales as discussed by

Nahmias and Smith7 is not considered in this paper.

When this research was initiated, Retailcorp carried an

aggregate inventory of one billion dollars on a running

basis. Apart from the huge storage and allied inventory

carrying costs, Retailcorp was incurring signi®cant costs

from discarding items which remained unsold on their

respective expiration dates. The corporate philosophy stipu-

lated a service level, or ®ll rate, of 95%, which means that a

customer should ®nd his=her product of interest on at least

95% of his=her visits to a Retailcorp store. The probability

for a random item to be available at a random store, on any

random day must be equal to or exceed 95%.

Previous efforts at addressing the above problem have

concentrated on ®nding patterns in the data provided by the

company's `data warehouses', and forecasting the sales levels

of different items on the basis of historical data. This paper,

however, adopts a slightly different approach. First, it focuses

on a Dynamic Programming (DP) methodology to derive a

state equation, and introduces a cost function that penalizes

higher inventory subject to a service level constraint. Second,

the process of training a neural network to help determine the

optimal inventory levels is described.

This paper is organised as follows: First, the problem is

discussed from two different aspects: a Dynamic Program-

ming (DP) and a corresponding Neural Network (NN)

approach. Second, the results obtained from an initial analy-

sis of the data are highlighted: the sales data do not possess a

normal distribution and the demand for individual items

changes signi®cantly from year to year. Third, a solution is

obtained using a traditional model and another solution is

obtained using a feed-forward Neural Network. Finally, the

results obtained with a hybrid framework are presented.

De®nition of problem

Dynamic programming de®nition

The nature of the inventory problem facilitates the use of

Dynamic Programming techniques. The use of DP for

inventory optimisation, especially when the demand is

not constant over the planning horizon, has been analysed
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by other researchers.2±4 The situation varies from day to

day, and depending on the conditions of that day, a certain

decision has to be taken. The sequential decision-making

process inherent to DP models offers several alternative

solutions, from which an optimal solution can be chosen

based on attaining the maxima or the minima of a certain

variable. In our case, the goal was to seek the minima for

the inventory. Traditional inventory and forecasting meth-

ods have been compared in other studies.1,2,4

The ®rst step in solving the above problem is to construct a

dynamicsystem(Figure1)with the followingstateequation11:

xk�1 � xk � uk ÿ wk �1�

where: xk is the inventory available at the beginning of

period k; uk is the inventory ordered at period k; and wk is

the demand during the kth period.

The Retailcorp situation has two signi®cant differences

from the problem de®ned in Berstekas.11 First, based on the

commodities carried by Retailcorp, in a situation where it

loses sales, no Retailcorp outlet can have a negative, or

backlogged, demand. If a store runs out of a certain

product, it is assumed that the unsatis®ed customer will

then go to another store (possibly a competitor), and may

also return to the other store in the future. Therefore, unmet

demand or lost sales not only imply lower pro®ts, but could

result in the permanent loss of customers. The 95% item ®ll

rate level was established to avoid this situation. As such,

the case of an isolated community with only one store

where backlogged demand could easily occur is not consid-

ered in our running example.

The second difference is that there is a time lag between

the placement of an order by the store and the delivery of

the goods to that store, that is, the replenishment lead time

is not zero. While customers can buy from the store on any

day of the week at any time, the store is permitted to place

orders only on a weekly basis, and to receive the ordered

items a few days later. This supply lead time of more than a

week is considered in our model.

To attain the desired level of customer satisfaction,

Retailcorp utilised a policy of `three weeks of supply' in

which the average weekly demand for each item was

computed using the last two years' data, and each store

was expected to carry inventory equivalent to three weeks

of `average demand' for that item. Several problems in this

policy have been studied by Bansal et al.12 First, the

demand for slow and fast moving items are modeled and

forecast in exactly the same fashion. Second, no special

consideration is given to items characterised by abrupt or

seasonal demand (as compared to ones with a ¯at rate of

demand). Third, some kind of items require special hand-

ling, which may imply a higher cost and even a shorter life

time in some cases. Based on these considerations, the

formulation of a better policy was deemed necessary.

Equation (1) can be expanded to include an additional

term to incorporate the constraint of 95% customer satis-

faction. This parameter can be stated in terms of a (which in

our case is 0.95) and is squared to avoid both overstocking

and understocking. We then propose the minimisation of:

min
uk

Efxk�1g � c�P�xk�1 > 0� ÿ a�2 �2�

where c is a constant of proportionality. In classical

Dynamic Programming,11 a minimisation of E{cuk � p max

(0, 7 xk � 1) � h max (0, xk � 1)} would be required.

However, in the case of Retailcorp, the costs associated

for negative and positive inventory were not available, and

emphasis was given to the total inventory reduction and the

customer satisfaction. The minima is computed by the

expected value because the demand over a certain period

is supposed to be a random variable with a certain prob-

ability distribution, and is analysed later in this paper. The

inventory equation can be expressed in terms of a cost

function, g(uk):

g�uk� � Efxk � uk ÿ wkg � c�P�xk�1 > 0� ÿ a�2 �3�
g�uk� � xk � uk ÿ Efwkg � c�P�xk � uk > wk� ÿ a�2 �4�

since xk and uk are not random variables. The computation

of P(xk � 1> 0) is done numerically using order statistics.13

When g(uk) is minimised over uk, xk is independent of uk,

and uk will be a monotonically increasing function. There-

fore, the minimum will depend on the last two terms of (4).

Experimental data from Retailcorp were used in order to

evaluate g(uk) since the expected values of demand and

probability were required. One can visualise three possible

outcomes as follows:

uk > c�P�xk�1 > 0� ÿ a�2 min g�uk� ! min uk

uk ' c�P�xk�1 > 0� ÿ a�2 min g�uk� � f �c�

uk < c�P�xk�1 > 0� ÿ a�2 min g�uk�
! min c�P�xk�1 > 0� ÿ a�2

The three outcomes are shown graphically in Figure 2. One

should note that without the 95% constraint, the last term of

the equation will not exist; in such a scenario, the solution

will be the one stated in the ®rst condition where c is small,

and then the minimum of g(uk) will tend to the minimum of

uk; in other words, the inventory supply should be the sameFigure 1 Inventory system.
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as the sales demand, and therefore, the accumulated inven-

tory should be zero.

The process of predicting the exact demand from a time

series has been discussed in a number of previous

papers.14±17 We opted to use a threshold approach, where

the delineation of the threshold, rather than the analysis of

the sales data, is the real objective. In this way, one avoids

having to deal with daily variance, and can also adopt the

weekly ordering concept utilised by Retailcorp. The in¯u-

ence of the 95% constraint depends on the constant c,

which in turn de®nes the minimum value for the equation

g(uk). The role of c is then to balance two important factors:

the level of customer satisfaction (large c) and the need for

holding minimum inventory levels (small c). The cost

function de®ned here is simple, but serves to illustrate the

value of these techniques as opposed to time series fore-

casting of raw sales data. More complicated cost func-

tions2±4 could be handled in a similar fashion.

De®nition of neural networks

Neural Networks (NNs) are a class of input-output models

capable of learning through a process of trial and error, and

collectively constitute a particular class of nonlinear para-

metric models where learning corresponds to statistical

estimation of model parameters. In the literature on NNs,

a number of architectures, approaches and applications

have been proposed.18±22

A common learning algorithm for feed-forward Neural

Networks is error backpropagation.22 The network is given

a series of input-output pairs from which it tries to adapt its

output to a certain target value by changing the weight and

bias values inside the network. The process of calculating

new weights and bias values is repeated until a certain error

condition is satis®ed; once this happens, the `training'

phase is terminated. The subsequent `test' phase uses the

values of weights and bias values that were generated

during the training phase.

A common application of NNs relates to problems of

forecasting and prediction of time series.12,15±17,23 The

general autoregressive time series forecasting case assumes

that the next value in a time series will depend upon the

previous data in the manner: Sn�1 �f�Sn; Snÿ1; . . .�,
where f could be a nonlinear function. It should be

noted that no causal factors such as sales or promotions

were considered.24 Classical techniques to forecast values

of Si assume that the function f is known, so that the

problem becomes one of estimation of its parameters (for

example, an assumption could be that the time series follows

a linear growth, in which case linear regression technique

suf®ces to provide the formula f � mSi � b).

Feed-forward Neural Networks and other kind of NNs

have been proposed as possible solutions for this applica-

tion area.23,25,26 While ordinary feed-forward NNs are used

to handle the nonlinear autoregressive component only,

recurrent NNs are often used to model the nonlinear

moving average component also.15,17,26,27 Speci®cally,

NNs are used to learn the correct form of f without

having to assume any speci®c function. This approach

offers two advantages: one does not need to know in

Figure 2 Minimising a cost function g(uk) to optimise inventory level for required customer satisfaction.
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advance the dynamics of the time series; and a NN will

learn complex and highly nonlinear patterns (even chaotic

functions17). The drawback is the amount of data required

for the training of the NN.

The implementation of the above network was done in

MATLAB21 using a feed-forward network with back-

propagation algorithm. Several con®gurations were evalu-

ated. A typical network is presented in Figure 3 and is

comprised of a network with an input layer of ®ve neurons

characterised by a pure linear function, a hidden layer

with three neurons characterised by sigmoid functions,

and a single output neuron characterised by a pure linear

function.

Analysis of data

In a previous example,12 the database from Retailcorp was

used and analysed to predict future demand levels. One of

the models proposed, the ¯at sales model, relies on two

assumptions: that sales curves are always normal, and that

sales data for one year match ones for the next year. We

decided to test these two assumptions.

Figure 4 shows the histograms for the sales of one

particular item at a number of stores. The graphs in the

upper and lower subsets of the ®gure correspond to daily

sales ®gures for two consecutive years: 1995 and 1996. The

mean and the threshold (95% of the maximum) are shown.

These ®gures show that the distribution is far from normal.

Even if the data are analysed on a weekly basis using a

moving average ®lter,27 the hypothesis of normality is

arguable, since a Poisson distribution, as proposed by

Schwartz et al9 or Negative Binomial distribution as

proposed by Agrawal and Smith5 would yield similar

histograms. Not only do the mean sales values vary signi®-

cantly from year to year, the histograms also show that the

shape of the distribution is different for each year. In other

words, the demand of a certain product varies not only in

terms of quantity (different mean), but also in terms of

frequency (histogram shape).

From this initial analysis of the data, we thought it

necessary to develop a better framework which could

adequately address the random behaviour of the data. The

use of a ®xed distribution was discarded and a per-item

analysis was performed using daily data from Retailcorp.

This gave us some ¯exibility for modeling fast- and slow-

moving items.

Traditional solution: sales threshold

In order to use (1) to minimise the inventory over time, a

proper sequence for uk needed to be found. The demand wk

is not known and the inventory xk is the result of the

previous time period. As such, the amount of inventory

ordered for the period is the only variable which can lead to

a solution to the equation. In Bertsekas,11 a mapping

function uk(xk) that gives a proper uk is introduced, and

the optimal ordering rule for the inventory system is

expressed as:

uk�xk� � Sk ÿ xk ; xk < Sk

0; xk 5 Sk

�
�5�

where Sk is a proper threshold level. Sk can be either ®xed,

like the `three weeks of supply' policy, or adaptable, that is:

Sk�1 �
Sk

f�xk �

�
�6�

The ®rst step in minimising the inventory levels for

Retailcorp is to ®nd an optimum threshold level per item,

instead of using a ¯at `three weeks' concept for all items.

Accordingly, for each item, the sales data for 1995 were

utilised to obtain the proper threshold values using order

statistics.

Because of the time variant nature of the data for 1996,

the use of a static threshold level for the whole year fails to

comply with the restriction of 95% customer satisfaction.

As such, the threshold level was used as a starting value for

the ®rst day of 1996, and an adaptation rule was used for

later dates in that year.

Figure 5 shows the behaviour of the inventory level over

time using a variable threshold. At Retailcorp, while the

inventory level can decrease on a daily basis, it can increase

only once every seven days. The circles in the upper part of the

®gure represent the level of the threshold for the day of

supply. The asterix over the x axis represents each day that

the inventory is exhausted, that is a day when the 95% ®ll rate

was not satis®ed. These days are termed as `undershoots'.

Based on the DP system proposed, an empirical method

to obtain the threshold can be derived. The threshold can be

obtained through a periodic calculation that can adapt to the

present conditions. The calculation is done by taking into

account the past values of sales demand, as well as the

values for the week that just ended. The question now is,

how many past days should be considered while calculating

the new threshold? This problem has certain similarities to
Figure 3 Neural network architecture (as implemented in

MATLAB).

88 Journal of the Operational Research Society Vol. 50, No. 1



the typical ¯ow control problem, and ¯ow control analysis

techniques can therefore be used. A sliding window

procedure28 can be used, taking a ®xed number of days

to compute the future threshold. With the small size of the

window, the calculated threshold is usually not very accu-

rate, since a slight variation of the demand provokes a

variation of the threshold and causes the behaviour of this

threshold to be highly variable. As the window grows

bigger, the threshold becomes increasingly stable. Above

the 95% value for the customer satisfaction, the threshold is

very stable. This implies an almost ®xed value for the

threshold with variations in the current demand having only

minor impact on the threshold value.

An analysis of Figure 5 suggests several ideas for

minimising the total amount of inventory: weights can be

assigned to the previous days in order to give more

Figure 4 Histograms for sales in consecutive years.

Figure 5 Behaviour of inventory over time.
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importance to recent events and less importance to earlier

ones; previous threshold calculations can be averaged with

the new calculated value to avoid oscillations caused by

sudden changes in the sales; and a penalty can be intro-

duced to the new threshold if there is either a positive

inventory level or an excessive number of undershoots

occurred during the last week. Several of these ideas

were tested and the resulting threshold values and inventory

levels were analysed. In most cases, the inventory levels

were reduced and the customer satisfaction level was still

maintained above 95%. However, there was no rule for

setting the new parameters for different sales patterns;

furthermore, no generalised solution could be identi®ed.

A NN approach, which provided better results for all

kinds of input data, is described in the next section.

Neural network solution

Using the data from Retailcorp, a NN was trained to follow

the threshold levels with the objective of forecasting the

new value. The architecture of network used was a feed-

forward Neural Network with nine input neurons, ®ve

hidden neurons and one output neuron. The standard back-

propagation training algorithm turned out to be too slow, so

two modi®ed optimisation methods for backpropagation

were used.21 First, a momentum term was added to the

weight update rule. This momentum term decreases the

sensitivity of the algorithm to small details, so that if a

local minima is located next to a global minima, the

algorithm can reach the proper lowest value. Second, an

adaptive learning rate was applied. This adaptive learning

process tries to keep the learning pace as fast as possible

while retaining stability. With the optimal backpropagation

algorithm, several test data were used for training the

network, testing its capability to approximate a certain

pattern, and predicting new values.

The thresholds for every week serve as input data for the

network, for both training and testing purposes. These data are

received at the input layer of the Neural Network Artchitec-

ture shown in Figure 3. The output layer presents the threshold

predicted value. A simulation model with a ®xed threshold,

similar to the ones described in the previous section, was used.

For each time-period of supply, the lack or surplus of

inventory was calculated and the previous threshold was

adjusted accordingly. This process was continued until the

required threshold data set was created.

Two different prediction scenarios were evaluated: multi-

ple step prediction and single step prediction. The multiple

step prediction (msp) technique takes into account the data

from the entire training period (namely, sales data from

1995) in order to predict the threshold levels for the test

period (namely, 1996). The single step prediction (ssp)

technique focuses on the prediction of the next value in

the series only. The predicted value was then compared with

the corresponding target value to see the difference between

the two values and this information was then used to

enhance the accuracy of the previous predicted value. The

next value was then predicted using the corrected point in

the series. This resulted in accurate results with the test data.

To precisely evaluate the performance of the network, a

quantitative parameter was calculated. A common measure

is the factor e=s where e is the root mean square error of the

test set, and s is the standard deviation of the test set. This

factor is calculated using the following equations29:

E �
�������������������������Pk
a�1

�xa ÿ x̂a�2
s

�7�

s �
�������������������������Pk
a�1

�xa ÿ �xa�2
s

�8�

where: xa is the ath target value; k is the total number of

target values; x̂a is the approximation or predictions for the

ath value; and �xa is the average of the series xa.

After the network's ability to accurately predict test

functions had been validated as above, data from Retailcorp

were used to train and test the network. Figure 6(a) shows

the raw data from the sales of one particular item of

Retailcorp. The lines have three different patterns for

training data, cross-validation data, and test data. (The

difference between the latter two sets is explained in the

next section.) Figure 6(b) shows the behaviour of the

inventory levels during the training phase, and the thresh-

olds required to keep the inventory to a minimum. These

threshold levels are used as the target values during the

training phase. Figure 6(c) shows the networks perfor-

mance; for a training of 2000 epochs, e=s was 0.502.

It should be noted that as e=s tends to zero, the predicted

values tend towards the test values, and if e=s tends to one,

the prediction is no better than the simple mean. The top

graph of Figure 7 shows the output patterns of the network,

both multiple step and single step against the required

threshold. The error values e=s were close to one, which

implies a need for future re®nement; this process is

described in the next section of this paper. The same

network was tested with a sinusoidal function shown in

the bottom graph of Figure 7. The graph shows the predic-

tions made by the network, both for the multiple step

prediction (msp) and the single step prediction (ssp), and

highlights the ability of the network to learn the regular

pattern of the low frequency sinusoidal function.

When the predicted values were used as threshold values

and subsequently analysed as a time series using NNs, the

total inventory size was found to be signi®cantly reduced.

As the NN algorithm is concerned only with minimising the

squared errors (and does not ensure that the predictions stay

above the target values), the customer satisfaction levels

dropped by about 10±15%. To ensure 95% customer

satisfaction levels, a cross-validation technique with a

surrogate parameter was used. This method (discussed in
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the next section) ensured the lowest possible inventory

levels while ensuring adherence to the 95% customer

satisfaction constraint.

The results are shown in Table 1. `Test 1', `Test 2' and

`Test 3' denote the (hypothetical) test data sets that are

based on a mixture of two sinusoidals of different frequen-

cies; one sinusoidal series with noise; and a mixture of two

sinusoidals with an increasing trend respectively. `Item 1',

`Item 2', `Item 3' and `Item 4' refer to four different items

that Retailcorp carries in its inventory. In six out of the

seven cases, the addition of the surrogate parameter

increases the customer satisfaction level, as well as the

Figure 7 NN outputs for multiple and single step prediction for Retailcorp data and test sets.

Figure 6 Approximation of neural network parameters through cross-validation.
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total inventory ®gures. For the real data from Retailcorp,

the increase in the satisfaction level was more signi®cant

than for the hypothetical test data sets, and this is due to the

randomness of the time series generated from the real data.

Hybrid model with surrogate parameters

As mentioned above, a number of NN con®gurations

yielded signi®cant reduction of inventory levels, but carried

an associated reduction in customer satisfaction. This

problem arises because the NN algorithm uses the

summed squared error factor as the cost function. This

error does not take into account the sign of the difference

between the approximated value and the actual value.

Further more, the existing learning algorithms described

above only deal with the magnitude of the derivative, and

not its sign. To mitigate this problem, an arti®cial compen-

sation factor was included by us through cross-validation as

described in the following paragraphs.

The data were again grouped into two categories: train-

ing data and testing data. The training phase was subdi-

vided into two subsections: `pure training' and `cross-

validation'. The pure training phase concentrated on deter-

mining the most probable NN parameters (weights and

bias) and the cross-validation phase focused on reducing

the undershoots. Assuming that the probability distribution

of the errors conforms to a Gaussian distribution, the ®nal

thresholds were scaled up by a parameter which is a

function of e, which in turn is the standard deviation of

the error and is determined from the training data. Assuming

a linear form for this function, the corresponding parameter

was determined during the cross-validation phase. By

experimentation, a simple factor of one-third was deter-

mined to be adequate to ensure the 95% constraint, thus

con®rming that the results of the NN model were very close

to the optimum point. Incidentally, a different technique

based on Bayesian considerations has been proposed by

some researchers.25,30±32

The ®nal results are shown in Table 2. Again, `Test' data

sets and `Item' data sets are evaluated, and for each case,

the hybrid model performs signi®cantly better than the

models described in previous sections of this paper.

(Please note that in both Tables 1 and 2, `Test' refers to

non-data items and `Item' refers to real data.)

Substantial reduction in inventory levels were achieved

in three of the four cases of the Retailcorp data, and

marginal reduction was achieved in the fourth case of the

Retailcorp data. These reductions occurred while ensuring

that the customer satisfaction level was at least 95% in all

cases. Further, the hybrid model performed better than the

traditional model and the NN model in all four cases. The

best performance was observed for Item 1, while Item 4

showed only marginal improvement. This disparity may be

attributable to the performance of the NN model (e=s �
0.65 for Item 1 e=s � 0.78 for Item 4). It should be noted

that while for Item 4 the improvement in inventory was

lower than the other cases, the customer satisfaction was

nevertheless increased. The above results demonstrate the

Table 1 Effect of surrogate parameter in hybrid NN models

Satisfaction Satisfaction Total inventory Total inventory
level without level with without surrogate with surrogate

surrogate surrogate parameter parameter
parameter parameter [items] [items]

Test 1 94.1% 98% 2.53� 105 2.73� 105

Test 2 97% 97% 3.064� 105 3.31� 105

Test 3 96% 98% 4.059� 105 4.10� 105

Item 1 82.1% 97.1% 9.8� 104 2.13� 105

Item 2 86.4% 95% 4.48� 105 6.6� 105

Item 3 92.8% 95.7% 1.143� 105 1.38� 106

Item 4 85.7% 96.4% 9.66� 105 1.34� 106

Table 2 Traditional model versus hybrid NN plus surrogate parameter

Satisfaction Satisfaction Inventory Inventory Total
level with level with level with level with reduction
traditional NN traditional NN in inventory

model model model model size

Test 1 98% 98% 4.09� 105 2.73� 105 33.2%
Test 2 99% 97% 5.22� 105 3.31� 105 36.5%
Test 3 95% 98% 4.66� 105 4.10� 105 12.0%
Item 1 98.5% 97.1% 3.12� 105 2.13� 105 31.7%
Item 2 97.85% 95% 8.6� 105 6.6� 105 23.2%
Item 3 99.2% 95.7% 1.732� 106 1.38� 106 20.3%
Item 4 95% 96.4% 1.377� 106 1.34� 106 2.6%
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capability of the hybrid model to outperform both the

traditional method and a NN model while handling two

competing criteria (of minimising inventory levels and

achieving high availability). We believe similar results will

occur with other types of data sets as well.

Conclusions

We examined two approaches (traditional and Neural

Network based) for minimising inventory levels while

ensuring high customer satisfaction. Both of these

approaches performed better than the simple `three weeks

of supply' policy currently pursued by a major retail

organisation (Retailcorp). Next, we proposed a hybrid

model that combines both these methodologies and intro-

duces a new surrogate parameter. The hybrid model

performed signi®cantly better than existing models both

for the set of hypothetical data and the set of real data.

The traditional model used a Dynamic Programming

system to identify a running inventory level (or threshold)

required to maintain the desired customer satisfaction level.

This level was derived as a function of the preceding sales

values. The threshold value, rather than the actual sales

values, served as the centre of focus for our model. One

advantage of this approach is that the lowest inventory level

corresponding to given customer satisfaction probability

could be analysed without having to model the transac-

tional sales data that are characterised by the presence of

zeros and high noise levels.

In the second model, we trained neural networks to learn

the underlying trend in the threshold values, and created

forecasts for the future. This model performed well in terms

of minimising the inventory level, but not in terms of ensuring

conformity to customer satisfaction level; this de®ciency

arose from the structure of the NN algorithm itself.

We introduced the surrogate parameter in the hybrid

model to mitigate the problem associated with the NN

learning rule. Assuming the error distribution at each point

to be zero-mean Gaussian, the forecasted values were

enhanced through cross-validation. The hybrid model

with this surrogate parameter performed signi®cantly

better than either of the other two models (traditional and

Neural Network based).

We believe that the combination of NNs with traditional

data analysis tools presents a major opportunity to create

sophisticated data mining capabilities and applications.
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