Temario de la sesión

- 1. Repaso breve del curso básico
 - 1.1. Sintaxis general de R
 - 1.2. Estructuras básicas (vectors, data.frames, lists)
 - 1.3. Operadores lógicos
 - 1.4. Manejo de valores especiales: NaN, NULL, NA
- 2. Manejo avanzado de data frames
 - 2.1. Indexación múltiple y condicional
 - 2.2. Operaciones por columna y fila
 - 2.3. Filtrado con múltiples condiciones y operadores
- 3. Uso de dplyr
 - 3.1. Operaciones encadenadas para flujo de trabajo reproducible
 - 3.2. Verbos combinados: mutate(), group_by(), summarise(), arrange()
 - 3.3. Limpieza de datos reales con filter() y case_when()
 - 3.4. Uso de pivot_longer() y pivot_wider() desde tidyr
- 4. Introducción a funciones propias y programación modular
 - 4.1. Sintaxis general de funciones (function())
 - 4.2. Alcance de variables (local, global)
 - 4.3. Funciones de limpieza automatizada
- 5. Programación funcional con purrr
 - 5.1. Diferencias entre map(), map dbl(), map df()
 - 5.2. Uso de keep(), discard(), map_if()
 - 5.3. Iteraciones eficientes sobre listas y vectores
- 6. Diagnóstico y resumen de datos
 - 6.1. Uso de skimr::skim() para estadística descriptiva rápida

1. Repaso breve del curso básico

En esta sección repasaremos los conceptos esenciales del curso introductorio de R, que son la base para abordar los temas intermedios del curso actual.

1.1. Sintaxis general de R

```
# Asignación de variables
a <- 5
b <- 10
suma <- a + b
print(suma)

## [1] 15

# Comentarios se indican con el símbolo numeral
# Esto es un comentario

# Funciones básicas
sqrt(16)

## [1] 4

log(100, base = 10)</pre>

## [1] 2
```

1.2. Estructuras básicas

```
# Vectores
x \leftarrow c(1, 2, 3, 4, 5)
print(x)
## [1] 1 2 3 4 5
m <- matrix(1:9, nrow = 3, byrow = TRUE)</pre>
print(m)
         [,1] [,2] [,3]
## [1,]
                  2
            1
## [2,]
            4
                  5
                       6
## [3,]
            7
(mi_lista \leftarrow list(nombre = "Ana", edad = 25, notas = c(8, 9, 10)))
```

```
## $nombre
## [1] "Ana"
##
## $edad
## [1] 25
##
## $notas
## [1] 8 9 10

# Data frames
(df <- data.frame(nombre = c("Ana", "Luis"), edad = c(25, 30)))

## nombre edad
## 1 Ana 25
## 2 Luis 30</pre>
```

1.3. Operadores lógicos

1.4. Manejo de NaN, NULL y NA

```
# NA: valor faltante
y <- c(1, 2, NA, 4)
mean(y)  # NA

## [1] NA
mean(y, na.rm = TRUE) # 2.33
## [1] 2.333333</pre>
```

```
# NaN: resultado indefinido
z <- 0 / 0  # NaN

# NULL: objeto vacío
objeto_vacio <- NULL
length(objeto_vacio) # 0</pre>
```

```
## [1] 0
```

Nota: En análisis estadístico es común encontrarse con datos faltantes o mal definidos, por lo que es importante conocer su tratamiento desde el inicio.

Instalar paquetes o bibliotecas

R cuenta con mucha variedad de paquetes, el más famoso tidyverse es una compilación de otros paquetes enfocados en distintas areas del análisis, visualización y manipulación de datos, entre otros.

Para usar un paquete de R, primero se tiene que instalar y después se tiene que activar:

```
# install.packages("tidyverse")
library(tidyverse)
```

```
## -- Attaching core tidyverse packages ----- tidyverse 2.0.0 --
## v dplyr 1.1.4
                       v readr
                                  2.1.5
## v forcats 1.0.0
                       v stringr
                                  1.5.1
## v ggplot2 3.5.2
                       v tibble
                                  3.3.0
## v lubridate 1.9.4
                       v tidyr
                                  1.3.1
## v purrr
             1.0.4
## -- Conflicts ----- tidyverse_conflicts() --
## x dplyr::filter() masks stats::filter()
## x dplyr::lag()
                   masks stats::lag()
## i Use the conflicted package (<a href="http://conflicted.r-lib.org/">http://conflicted.r-lib.org/</a>) to force all conflicts to become error
```

Notar el uso de comillas en la primera función y en la segunda no.

2. Manejo avanzado de data frames

En R, los data frames son una de las estructuras de datos más utilizadas para trabajar con información tabular. Son similares a las hojas de cálculo de Excel o a tablas en bases de datos:

- Cada columna representa una variable.
- Cada fila representa una observación o registro.

En cursos básicos, normalmente aprendemos a:

- Crear un data.frame.
- Acceder a columnas.
- Hacer operaciones simples de filtrado.

Sin embargo, en **manejo avanzado** buscamos **eficiencia**, **flexibilidad y expresividad**, lo que significa que vamos a trabajar con:

1. Indexación múltiple y condicional

- Acceder a filas y columnas específicas usando posiciones, nombres o condiciones lógicas.
- Seleccionar datos cumpliendo múltiples criterios.

2. Operaciones por columna y fila

- Calcular estadísticas por variable o por observación.
- Crear nuevas columnas a partir de otras.
- Aplicar funciones de manera eficiente con apply(), rowSums(), rowMeans() y funciones vectorizadas.

3. Filtrado con múltiples condiciones y operadores

- Usar operadores lógicos (&, |, !) para combinar criterios.
- Filtrar por valores específicos usando %in%.
- Integrar librerías como dplyr para escribir código más legible y ordenado.

2.1. Indexación múltiple y condicional

En R podemos indexar un data frame de varias maneras:

Por posición:

```
df <- data.frame(
  Nombre = c("Ana", "Luis", "María", "Pedro"),
  Edad = c(23, 31, 27, 40),
  Ciudad = c("CDMX", "Monterrey", "CDMX", "Guadalajara")
)

# Seleccionar la 1º fila, 2º columna
df[1, 2]</pre>
```

[1] 23

```
\# Varias filas y columnas
df[1:3, c(1, 3)]
    Nombre
              Ciudad
##
## 1 Ana
                CDMX
## 2 Luis Monterrey
## 3 María
                CDMX
Por Nombre:
# Columna por nombre
df[ , "Edad"]
## [1] 23 31 27 40
# Varias columnas por nombre
df[ , c("Nombre", "Ciudad")]
##
    Nombre
                Ciudad
                  CDMX
## 1
      Ana
## 2 Luis Monterrey
## 3 María
                  CDMX
## 4 Pedro Guadalajara
por indexación condicional:
# Personas con edad mayor a 30
df[df$Edad > 30, ]
    Nombre Edad
                     Ciudad
## 2 Luis 31 Monterrey
## 4 Pedro 40 Guadalajara
# Personas de CDMX con edad < 30
df[df$Ciudad == "CDMX" & df$Edad < 30, ]</pre>
##
    Nombre Edad Ciudad
## 1 Ana 23 CDMX
## 3 María 27 CDMX
```

2.2. Operaciones por columna y fila

Operaciones vectorizadas por columna:

```
# Nueva columna: Edad en meses
df$EdadMeses <- df$Edad * 12

# Promedio de edad
mean(df$Edad)</pre>
```

[1] 30.25

Operaciones por fila con rowSums() y rowMeans():

```
notas <- data.frame(</pre>
 Alumno = c("A", "B", "C"),
 Parcial1 = c(80, 90, 75),
 Parcial2 = c(85, 88, 70),
 Parcial3 = c(90, 92, 80)
# Promedio por alumno
notas$Promedio <- rowMeans(notas[ , 2:4])</pre>
# Suma por alumno
notas$Suma <- rowSums(notas[ , 2:4])</pre>
Con la función apply():
# Suma por fila usando apply
apply(notas[ , 2:4], 1, sum)
## [1] 255 270 225
# Máximo por columna
apply(notas[ , 2:4], 2, max)
## Parcial1 Parcial2 Parcial3
##
         90
                  88
2.3. Filtrado con múltiples condiciones y operadores
Uso de operadores lógicos (And, Or, Not):
# Alumnos con promedio > 85 y Parcial1 > 80
notas[notas$Promedio > 85 & notas$Parcial1 > 80, ]
##
     Alumno Parcial1 Parcial2 Parcial3 Promedio Suma
## 2
          В
                  90
                            88
                                     92
                                               90 270
# Alumnos con promedio < 80 o Parcial3 < 80
notas[notas$Promedio < 80 | notas$Parcial3 < 80, ]</pre>
     Alumno Parcial1 Parcial2 Parcial3 Promedio Suma
## 3
                            70
                                              75 225
          C
                  75
                                     80
Uso de %in% para múltiples valores:
# Filtrar ciudades específicas
df[df$Ciudad %in% c("CDMX", "Monterrey"), ]
```

Con dyplr:

1

Nombre Edad

Luis

3 María 27

Ana 23

Ciudad EdadMeses

276

372

324

CDMX

CDMX

31 Monterrey

```
library(dplyr)
df %>%
filter(Ciudad == "CDMX", Edad < 30) %>%
select(Nombre, Edad)
## Nombre Edad
## 1 Ana 23
## 2 María 27
notas %>%
 filter(Promedio > 85 | Parcial3 > 85) %>%
arrange(desc(Promedio))
## Alumno Parcial1 Parcial2 Parcial3 Promedio Suma
## 1
    B 90 88 92 90 270
## 2
      Α
             80
                      85
                             90
                                   85 255
```

3. Uso de dyplr

El paquete dplyr forma parte del conjunto de herramientas del tidyverse y está diseñado para manipular datos de manera clara, eficiente y reproducible.

Se basa en verbos que describen acciones sobre los datos, junto con el operador **pipe** (%>%) que permite encadenar operaciones.

3.1. Operaciones encadenas para el flujo de trabajo reproducible

En lugar de hacer múltiples asignaciones intermedias, podemos **encadenar pasos** para que el flujo de transformación de datos sea más legible.

```
library(dplyr)

# Ejemplo con mtcars: Filtrar autos con mpg > 20 y seleccionar variables clave

mtcars %>%
  filter(mpg > 20) %>%
  select(mpg, cyl, hp) %>%
  arrange(desc(mpg))
```

```
##
                   mpg cyl
                             hp
## Toyota Corolla 33.9
                             65
## Fiat 128
                  32.4
                          4
                             66
## Honda Civic
                  30.4
                          4
                             52
## Lotus Europa
                  30.4
                          4 113
## Fiat X1-9
                  27.3
                             66
## Porsche 914-2
                  26.0
                          4
                             91
                          4
                             62
## Merc 240D
                  24.4
## Datsun 710
                  22.8
                             93
## Merc 230
                  22.8
                             95
## Toyota Corona 21.5
                             97
## Hornet 4 Drive 21.4
                          6 110
## Volvo 142E
                  21.4
                          4 109
## Mazda RX4
                  21.0
                          6 110
## Mazda RX4 Wag 21.0
                          6 110
```

Ventajas:

- Lectura secuencial del proceso.
- Código más corto y fácil de mantener.
- Menos objetos intermedios en memoria.

3.2. Verbos combinados: mutate(), group_by(), summarise(), arrange()

- mutate(): crea o transforma columnas.
- group_by(): agrupa datos por una o más variables.
- summarise(): resume información de cada grupo.
- arrange(): ordena filas.

```
mtcars %>%
  mutate(consumo_kml = mpg * 0.425) %>%
  group_by(cyl) %>%
  summarise(
    promedio_hp = mean(hp),
    max_mpg = max(mpg),
    .groups = "drop"
) %>%
  arrange(desc(max_mpg))
```

```
## # A tibble: 3 x 3
       cyl promedio_hp max_mpg
##
     <dbl>
                <dbl>
                         <dbl>
## 1
       4
                 82.6
                          33.9
                          21.4
## 2
        6
                 122.
## 3
        8
                 209.
                          19.2
```

3.3. Limpieza de datos reales con filter() y case_when()

- filter(): selecciona filas según condiciones lógicas.
- case_when(): crea variables categóricas a partir de condiciones.

```
df <- data.frame(
  nombre = c("Ana", "Luis", "María", "Pedro", "Juan"),
  edad = c(23, 31, 27, 40, 19),
    ciudad = c("CDMX", "Monterrey", "CDMX", "Guadalajara", "Monterrey")
)

df %>%
  filter(ciudad %in% c("CDMX", "Monterrey"), edad > 20) %>%
  mutate(
    grupo_edad = case_when(
        edad < 25 ~ "Joven",
        edad <= 35 ~ "Adulto joven",
        TRUE ~ "Adulto"
    )
)</pre>
```

```
## nombre edad ciudad grupo_edad
## 1 Ana 23 CDMX Joven
## 2 Luis 31 Monterrey Adulto joven
## 3 María 27 CDMX Adulto joven
```

3.4. Uso de pivot_longer() y pivot_wider() desde tidyr

Estas funciones permiten cambiar el formato de los datos de ancho a largo y viceversa.

```
library(tidyr)

# Ejemplo: formato ancho a largo
notas <- data.frame(
   alumno = c("A", "B", "C"),
   parcial1 = c(80, 90, 75),
   parcial2 = c(85, 88, 70),</pre>
```

```
parcial3 = c(90, 92, 80)
)

# De ancho a largo
notas_largo <- notas %>%
  pivot_longer(
    cols = starts_with("parcial"),
    names_to = "examen",
    values_to = "calificacion"
)

# De largo a ancho
notas_largo %>%
  pivot_wider(
    names_from = examen,
    values_from = calificacion
)
```

```
## # A tibble: 3 x 4
## alumno parcial1 parcial2 parcial3
## <chr> <dbl> <dbl> <dbl> <dbl> 90
## 2 B 90 88 92
## 3 C 75 70 80
```

4. Introducción a funciones propias y programación modular

En R, las funciones nos permiten automatizar tareas, reutilizar código y mantener un flujo de trabajo limpio y ordenado.

La programación modular consiste en dividir un problema en piezas pequeñas (funciones) que se pueden desarrollar, probar y combinar fácilmente.

4.1. Sintaxis general de funciones

La estructura básica de una función en R es:

```
nombre_funcion <- function(argumento1, argumento2 = valor_por_defecto) {
    # Cuerpo de la función
    resultado <- argumento1 + argumento2
    return(resultado)
}

# Ejemplo de uso
suma_valores <- function(a, b) {
    return(a + b)
}</pre>
suma_valores(5, 3)
```

[1] 8

Nota: Los argumentos pueden tener valores por defecto. A su vez, return() es opcional si la última línea de la función ya es el valor que queremos devolver.

4.2. Alcance de variables (local, global)

En R, las variables pueden tener alcance local (solo existen dentro de la función) o global (existen fuera y dentro de las funciones).

```
x <- 10  # Variable global
mi_funcion <- function() {
  x <- 5  # Variable local (solo dentro de la función)
  return(x)
}
mi_funcion()  # Devuelve 5 (local)</pre>
```

[1] 5

```
x # Sigue siendo 10 (global)
```

[1] 10

Como regla general, si una variable se define dentro de una función, no afecta a la variable global con el mismo nombre. Y para modificar una variable global desde una función, se usa «- (pero se recomienda evitarlo salvo casos muy específicos).

4.3. Funciones de limpieza automatizada

Podemos crear funciones para automatizar transformaciones y limpieza de datos, evitando repetir código.

```
library(dplyr)
# Función para limpiar nombres y filtrar datos
limpiar_datos <- function(df, columna_filtrar, valor) {</pre>
  df %>%
    janitor::clean_names() %>%
                                       # Limpia nombres de columnas
    filter(.data[[columna_filtrar]] == valor) %>%
    mutate(across(where(is.character), toupper))
}
# Ejemplo
df <- data.frame(</pre>
  Nombre = c("Ana", "Luis", "María"),
  Ciudad = c("CDMX", "Monterrey", "CDMX"),
  Edad = c(23, 31, 27)
)
limpiar_datos(df, "ciudad", "CDMX")
```

```
## 1 nombre ciudad edad
## 1 ANA CDMX 23
## 2 MARÍA CDMX 27
```

5. Programación funcional con purrr

El paquete **purrr** (parte de *tidyverse*) facilita aplicar funciones a cada elemento de un vector/lista (**mapear**) de forma **expresiva y tipada**, produciendo salidas consistentes (listas, dobles, data frames, etc.). Su sintaxis con fórmulas abreviadas (~) y pronombres (.x, .y) hace el código más conciso y reproducible.

5.1. Diferencias entre map(), map_dbl(), map_df()

- map() devuelve lista (salida genérica).
- map_dbl() obliga a que el resultado sea **numérico (double)**.
- map_df() (o map_dfr()) apila filas y devuelve un data frame / tibble.

```
library(purrr)
library(dplyr)
library(tibble)
# Ejemplo base: vector numérico
v \leftarrow c(2, 4, 6, 8)
# 1) map(): siempre lista
res_lista <- map(v, ~ .x^2)
str(res_lista) # lista de 4 elementos
## List of 4
   $ : num 4
    $: num 16
   $: num 36
    $: num 64
# 2) map_dbl(): vector numérico
res_dbl <- map_dbl(v, ~ .x^2)
res_dbl
## [1] 4 16 36 64
\# 3) map_df(): devuelve tibble (una fila por elemento, o más si devuelves varios campos)
res_df <- map_df(v, ~ tibble(entrada = .x, cuadrado = .x^2))
res_df
## # A tibble: 4 x 2
     entrada cuadrado
##
##
       <dbl>
                <dbl>
## 1
           2
## 2
           4
                   16
## 3
           6
                   36
           8
## 4
                   64
# Ejemplo con mtcars: calcular resumen por variable seleccionada
vars <- c("mpg", "hp", "wt")</pre>
map_df(vars, ~ tibble(var = .x,
                      media = mean(mtcars[[.x]]),
                      sd = sd(mtcars[[.x]]))
```

```
## # A tibble: 3 x 3
##
     var
             media
                       sd
##
             <dbl>
                    <dbl>
     <chr>>
## 1 mpg
             20.1
                    6.03
            147.
                   68.6
## 2 hp
## 3 wt
             3.22 0.978
```

Cuándo usar cada una:

- Usa map() si la salida no es homogénea o necesitas una lista.
- Usa map_dbl() / map_chr() / map_int() cuando requieras un tipo específico.
- Usa map_df() (o map_dfr()) si quieres consolidar resultados "fila a fila" en un solo data frame.

5.2. Uso de keep(), discard(), map_if()

- keep(.x, .p) conserva elementos que cumplen el predicado .p.
- discard(.x, .p) descarta elementos que cumplen .p.
- map_if(.x, .p, .f) aplica .f solo a los elementos que cumplen .p (los demás se dejan igual).

```
library(purrr)
library(dplyr)
# Lista heterogénea
L \leftarrow list(a = 1:3, b = "texto", c = 10:12, d = NA)
# 1) keep(): mantén solo los numéricos
solo_numericos <- keep(L, is.numeric)</pre>
solo_numericos
## $a
## [1] 1 2 3
##
## $c
## [1] 10 11 12
# 2) discard(): elimina elementos vacíos o NA
sin_na <- discard(L, ~ all(is.na(.x)))</pre>
sin_na
## $a
## [1] 1 2 3
##
## $b
## [1] "texto"
##
## $c
## [1] 10 11 12
# 3) map_if(): elevar al cuadrado solo los numéricos; lo demás intacto
L2 <- map_if(L, is.numeric, ~ .x^2)
```

```
## $a
## [1] 1 4 9
##
## $b
## [1] "texto"
## $c
## [1] 100 121 144
##
## $d
## [1] NA
# Otro ejemplo: data frame y columnas numéricas
df <- as_tibble(mtcars)</pre>
# Estandarizar (z-score) únicamente columnas numéricas
df std <- df %>%
 mutate(across(where(is.numeric), ~ (.-mean(.))/sd(.)))
df_std %>% select(mpg, hp, wt) %>% slice(1:3)
## # A tibble: 3 x 3
##
       mpg
               hp
##
     <dbl> <dbl> <dbl>
## 1 0.151 -0.535 -0.610
## 2 0.151 -0.535 -0.350
## 3 0.450 -0.783 -0.917
```

Tip: Para columnas, hoy se prefiere dplyr::across(); para listas o vectores arbitrarios, purrr es ideal.

5.3. Iteraciones eficientes sobre listas y vectores

purr evita bucles explícitos y hace el código más declarativo. Además de map(), existen variantes para múltiples entradas:

• map2(.x, .y, .f): itera en paralelo sobre dos entradas.

##

origen

n media

<chr> <int> <dbl>

- pmap(.1, .f): itera sobre lista de listas (o data frame por filas).
- walk()/walk2()/pwalk(): como map* pero para efectos secundarios (imprimir, escribir archivos).

```
## 1 1
               5 0.129
## 2 2
              5 0.135
## 3 3
              5 0.0381
# 2) map2(): combinar dos vectores en paralelo -----
a <- 1:5
b <- 6:10
map2_dbl(a, b, ~ .x + .y) # suma elemento a elemento
## [1] 7 9 11 13 15
# 3) pmap(): múltiples argumentos por fila ------
param_grid \leftarrow tibble(mu = c(0, 1), sd = c(1, 2), n = c(5, 5))
# Para cada fila, generar n normales con (mu, sd) y devolver resumen
sim_res <- pmap(param_grid, function(mu, sd, n) {</pre>
 x \leftarrow rnorm(n, mean = mu, sd = sd)
 tibble(mu = mu, sd = sd, n = n, media = mean(x), min = min(x), max = max(x))
}) %>% bind_rows()
sim_res
## # A tibble: 2 x 6
       mu sd n media
                               min
## <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1
       0 1 5 0.460 -0.0449 0.944
              2
## 2
        1
                    5 1.16 -2.98 2.84
# 4) walk(): efectos secundarios (no devuelve resultado útil) ------
temp_files <- paste0("tmp_", 1:3, ".txt")</pre>
walk2(temp_files, c("A", "B", "C"), ~ write_lines(.y, .x)) # escribir archivos
                                            # imprimir ruta
walk(temp_files, ~ message("Creado: ", .x))
## Creado: tmp_1.txt
## Creado: tmp_2.txt
## Creado: tmp_3.txt
# Limpieza (opcional)
walk(temp_files, ~ if (file.exists(.x)) file.remove(.x))
# 5) Seguridad opcional: safely()/possibly() -----
# safely(): captura errores y devuelve list(result, error)
segura_log <- safely(log)</pre>
out <- map(list(1, 10, "x", -3), segura_log)
## Warning in .Primitive("log")(x, base): NaNs produced
out
## [[1]]
## [[1]]$result
## [1] 0
```

[[1]]\$error

```
## NULL
##
##
## [[2]]
## [[2]]$result
## [1] 2.302585
##
## [[2]]$error
## NULL
##
##
## [[3]]
## [[3]]$result
## NULL
##
## [[3]]$error
## <simpleError in .Primitive("log")(x, base): non-numeric argument to mathematical function>
##
##
## [[4]]
## [[4]]$result
## [1] NaN
##
## [[4]]$error
## NULL
# possibly(): define valor por defecto en error
log_pos <- possibly(log, otherwise = NA_real_)</pre>
map_dbl(list(1, 10, "x", -3), ~ log_pos(.x))
## Warning in .Primitive("log")(x, base): NaNs produced
## [1] 0.000000 2.302585
                                NA
                                        NaN
```

6. Diagnostico y resumen de datos

En esta sección usamos herramientas rápidas para: - Obtener **estadística descriptiva** clara y reproducible. - **Estandarizar nombres** de columnas para evitar errores y facilitar pipelines.

Recomendación: cargar estos paquetes al inicio del documento.

```
# install.packages(c("skimr", "janitor", "dplyr")) # si hace falta
library(skimr)
library(janitor)

##
## Attaching package: 'janitor'

## The following objects are masked from 'package:stats':
##
## chisq.test, fisher.test

library(dplyr)
```

6.1. Uso de skimr::skim() para estadística descriptiva rápida

skim() produce un resumen compacto por tipo de variable (numéricas, factores, fechas, etc.). Incluye conteos de NA, min, max, media, percentiles, y distribución (spark hist) cuando aplica.

Ejemplo con mtcars (convertimos algunas variables a factor para mostrar el comportamiento por tipo)

```
datos <- mtcars %>%
  mutate(
    cyl = factor(cyl),
    am = factor(am, labels = c("Automática", "Manual"))
)

# skim(datos)
```

Para documentos extensos, skim() puede ser verboso. Usa skim_without_charts() para evitar "sparklines":

```
skim_with(plots = list(histos = NULL)) # desactiva gráficos en skim (opcional)
## Creating new skimming functions for the following classes: histos.
## They did not have recognized defaults. Call get_default_skimmers() for more information.
## function (data, ..., .data_name = NULL)
## {
       if (is.null(.data_name)) {
##
##
           .data_name <- rlang::expr_label(substitute(data))</pre>
##
##
       if (!inherits(data, "data.frame")) {
##
           data <- as.data.frame(data)</pre>
##
       stopifnot(inherits(data, "data.frame"))
##
##
       selected <- names(tidyselect::eval_select(rlang::expr(c(...)),</pre>
```

```
##
           data))
##
       if (length(selected) == 0) {
##
            selected <- names(data)</pre>
##
       }
##
       grps <- dplyr::groups(data)</pre>
##
       if (length(grps) > 0) {
##
           group_variables <- selected %in% as.character(grps)</pre>
##
            selected <- selected[!group_variables]</pre>
       }
##
##
       else {
##
           attr(data, "groups") <- list()</pre>
##
##
       skimmers <- purrr::map(selected, get_final_skimmers, data,</pre>
           local_skimmers, append)
##
##
       types <- purrr::map_chr(skimmers, "skim_type")</pre>
##
       unique_skimmers <- reduce_skimmers(skimmers, types)</pre>
       combined_skimmers <- purrr::map(unique_skimmers, join_with_base,</pre>
##
##
           base)
       ready_to_skim <- tibble::tibble(skim_type = unique(types),</pre>
##
##
            skimmers = purrr::map(combined_skimmers, mangle_names,
##
                names(base$funs)), skim_variable = split(selected,
##
                types)[unique(types)])
##
       grouped <- dplyr::group_by(ready_to_skim, .data$skim_type)</pre>
       nested <- dplyr::summarize(grouped, skimmed = purrr::map2(.data$skimmers,</pre>
##
##
            .data$skim_variable, skim_by_type, data))
       structure(tidyr::unnest(nested, "skimmed"), class = c("skim_df",
##
##
            "tbl_df", "tbl", "data.frame"), data_rows = nrow(data),
           data_cols = ncol(data), df_name = .data_name, dt_key = get_dt_key(data),
##
            groups = dplyr::group_vars(data), base_skimmers = names(base$funs),
##
            skimmers_used = get_skimmers_used(unique_skimmers))
##
## <bytecode: 0x14d2723a8>
## <environment: 0x13cc645b0>
```

#skim(datos)

Puedes agrupar antes de resumir para comparar subpoblaciones:

```
# datos %>%

# group_by(am) %>%

# skim()
```

Si solo te interesan numéricas:

```
#datos %>%
# select(where(is.numeric)) %>%
#skim()
```