Temario de la sesión

- 1. Regresión lineal
 - $1.1.\ \mathrm{Modelo}$ lineal simple en R
 - 1.2. Diagnóstico inicial del modelo
 - 1.3. Criterios de selección de un modelo
 - 1.4. Verificación de supuestos y pruebas de bondad de ajuste
- 2. Procesos Estocasticos en R
 - 2.1. Cadenas de Markov
 - 2.2. Processo Poisson (simple, compuesto y no-homogeneo)
 - 2.3. Teoría de colas
- 3. Aplicaciones y extras
 - 3.1. Paquetes actuariales en R (lifecontingencies, actuar) (opcional)
 - 3.2. Uso de ChatGPT como apoyo en programación y estadística en R (opcional)

1. Regresión lineal

La regresión lineal es uno de los modelos estadísticos más utilizados para explicar la relación entre una variable respuesta Y y una o más variables explicativas X. El objetivo es:

- Modelar cómo cambia Y en función de X.
- Predecir el valor de Y para nuevas observaciones de X.
- Interpretar el efecto de los regresores sobre la respuesta.

El modelo lineal parte de la forma general:

$$Y_i = \beta_0 + \beta_1 X_{i1} + \beta_2 X_{i2} + \dots + \beta_p X_{ip} + \varepsilon_i$$

donde:

- β_0 es la ordenada al origen (intercepto).
- β_j mide el cambio esperado en Y por un cambio unitario en X_j .
- $\varepsilon_i \sim N(0, \sigma^2)$ son los errores aleatorios.

En esta sección veremos primero el caso más simple con una sola variable explicativa (regresión simple), para luego extendernos a varios regresores y a temas de diagnóstico y selección de modelos.

1.1. Modelo lineal simple en R

El modelo lineal simple tiene la forma:

$$Y_i = \beta_0 + \beta_1 X_i + \varepsilon_i$$

- β_0 : intercepto, valor esperado de Y cuando X=0.
- β_1 : pendiente, cambio esperado en Y por unidad de X.

El ajuste en R se realiza con la función lm() (linear model).

Ejemplo en R: datos simulados

```
set.seed(123)
x <- 1:20
y <- 5 + 2*x + rnorm(20, mean = 0, sd = 3) # modelo con ruido

modelo <- lm(y ~ x)
summary(modelo)</pre>
```

```
##
## Call:
## lm(formula = y \sim x)
## Residuals:
              1Q Median
      Min
                             3Q
                                    Max
## -5.964 -1.808 -0.113 1.558
                                 5.201
##
## Coefficients:
               Estimate Std. Error t value Pr(>|t|)
                             1.3860
                                       4.279 0.000452 ***
                  5.9303
## (Intercept)
```

```
## x 1.9519 0.1157 16.870 1.78e-12 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.984 on 18 degrees of freedom
## Multiple R-squared: 0.9405, Adjusted R-squared: 0.9372
## F-statistic: 284.6 on 1 and 18 DF, p-value: 1.778e-12
```

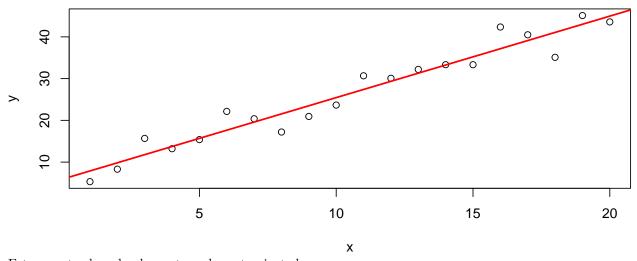
Interpretación:

- El output muestra estimaciones de $\hat{\beta}_0$ y $\hat{\beta}_1$.
- El summary() incluye errores estándar, valor t, p-value y R^2 .
- En este caso, la pendiente estimada debe estar cerca de 2.

Visualización

```
plot(x, y, main = "Regresión lineal simple")
abline(modelo, col = "red", lwd = 2)
```

Regresión lineal simple

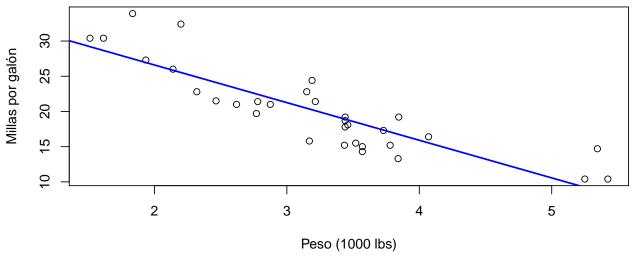


Esto muestra la nube de puntos y la recta ajustada.

Ejemplo en R: dataset real (mtcars)

```
# Relación entre peso (wt) y consumo de combustible (mpg)
modelo2 <- lm(mpg ~ wt, data = mtcars)
summary(modelo2)</pre>
```

MPG vs Peso del vehículo



Interpretación:

- Se observa una relación negativa: a mayor peso, menor rendimiento de combustible.
- El coeficiente de pendiente $\hat{\beta}_1$ indica cuántos mpg se pierden por cada 1000 libras extra de peso.

1.2. Diagnóstico y selección del modelo

El modelo lineal clásico asume que los errores ε_i :

1. Tienen media cero:

$$\mathbb{E}[\varepsilon_i] = 0$$

2. Son homocedásticos (varianza constante):

$$Var(\varepsilon_i) = \sigma^2$$

3. Son independientes:

$$Cov(\varepsilon_i, \varepsilon_j) = 0$$
 para $i \neq j$

No hay correlación entre observaciones.

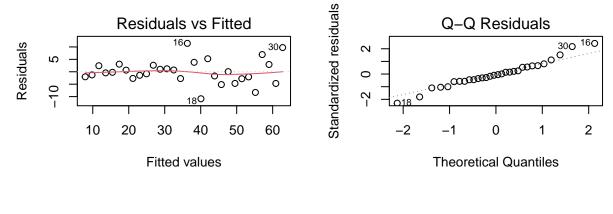
4. Son normales:

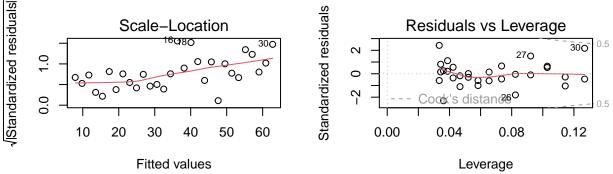
$$\varepsilon_i \sim N(0, \sigma^2).$$

Herramientas de diagnóstico en R

1) Gráficos de residuales

```
set.seed(123) x <- 1:30 y <- 5 + 2*x + rnorm(30, sd = ifelse(x < 15, 2, 6))  # heterocedasticidad simulada modelo <- lm(y ~ x) par(mfrow=c(2,2)) plot(modelo)  # residuales, QQ-plot, leverage, Cook's distance
```





par(mfrow=c(1,1))

- Residuals vs Fitted: debe verse nube aleatoria (detecta no-linealidad o heterocedasticidad).
- Normal Q-Q: residuales deben alinearse en la diagonal (normalidad).
- Scale-Location: detecta heterocedasticidad (debe ser horizontal).
- Residuals vs Leverage: identifica puntos influyentes (Cook's distance).
- 2) Prueba de homocedasticidad (Breusch-Pagan)

library(lmtest)

```
## Loading required package: zoo
##
## Attaching package: 'zoo'
## The following objects are masked from 'package:base':
##
## as.Date, as.Date.numeric
```

```
bptest(modelo) # HO: varianza constante
```

```
##
## studentized Breusch-Pagan test
##
## data: modelo
## BP = 4.7819, df = 1, p-value = 0.02876
```

- si el valor-p es bajo, es evidencia de heterocedasticidad.
- 3) Prueba de autocorrelación (Durbin–Watson)

```
dwtest(modelo) # HO: no autocorrelación
```

```
##
## Durbin-Watson test
##
## data: modelo
## DW = 2.2928, p-value = 0.7309
## alternative hypothesis: true autocorrelation is greater than 0
```

- si el valor-p es bajo, los residuales están correlacionados (problema típico en series de tiempo).
- 4) Multicolinealidad (VIF)

Se usa en modelos con múltiples regresores.

```
library(car)
```

```
## Loading required package: carData
```

```
modelo_multi <- lm(mpg ~ wt + hp + disp, data = mtcars)
vif(modelo_multi)</pre>
```

```
## wt hp disp
## 4.844618 2.736633 7.324517
```

- si el VIF > 10, implica multicolinealidad severa.
- 5) Prueba de normalidad de residuales

```
shapiro.test(resid(modelo)) # HO: residuales ~ N(O, varianza cte)
```

```
##
## Shapiro-Wilk normality test
##
## data: resid(modelo)
## W = 0.97319, p-value = 0.6297
```

• si tengo un valor-p bajo, implica que los residuales no son normales.

1.3. Selección de un modelo

Una vez verificados los supuestos básicos del modelo lineal, surge la pregunta: ¿Qué variables deben incluirse en el modelo?

- Un modelo demasiado pequeño (subespecificado) omite variables relevantes, introduciendo sesgo.
- Un modelo demasiado grande (sobreespecificado) aumenta la varianza de los estimadores y puede dificultar la interpretación.

La selección de modelos busca un equilibrio entre ajuste y parsimonia.

Criterios estadísticos comunes:

- R^2 y R^2 ajustado:
 - El \mathbb{R}^2 siempre crece al añadir variables.
 - El R_{aiustado}^2 penaliza la complejidad y puede disminuir si las variables añadidas no aportan valor.
- C_p de Mallows:
 - Compara un modelo reducido con el completo.
 - Un buen modelo cumple $C_p \approx p+1$, donde p es el número de regresores.
- AIC (Akaike Information Criterion) y BIC (Bayesian Information Criterion):
 - Valores más bajos indican mejor balance ajuste-complejidad.
- PRESS (Prediction Error Sum of Squares) o validación cruzada:
 - Evalúan la capacidad predictiva fuera de la muestra.

Métodos computacionales

- Selección exhaustiva: evaluar los 2^k modelos posibles (factible solo con pocos regresores).
- Selección paso a paso (stepwise):
 - Forward: empieza vacío y agrega variables.
 - Backward: empieza completo y elimina variables.
 - Mixto: combina ambos criterios.

Ejemplo en R: selección paso a paso con AIC

```
library(MASS)
# Datos de ejemplo: consumo de combustible en mtcars
modelo_completo <- lm(mpg ~ ., data = mtcars)</pre>
# Selección backward (parte del modelo completo)
modelo_step <- stepAIC(modelo_completo, direction = "backward")</pre>
## Start: AIC=70.9
## mpg ~ cyl + disp + hp + drat + wt + qsec + vs + am + gear + carb
##
##
          Df Sum of Sq
                           RSS
                                  AIC
## - cyl
           1
                0.0799 147.57 68.915
## - vs
           1
                0.1601 147.66 68.932
## - carb
          1
                0.4067 147.90 68.986
## - gear 1
                1.3531 148.85 69.190
```

```
## - drat 1
               1.6270 149.12 69.249
               3.9167 151.41 69.736
## - disp 1
## - hp
          1
               6.8399 154.33 70.348
## - qsec 1
               8.8641 156.36 70.765
                      147.49 70.898
## <none>
## - am
          1
              10.5467 158.04 71.108
          1
              27.0144 174.51 74.280
## - wt
##
## Step: AIC=68.92
## mpg ~ disp + hp + drat + wt + qsec + vs + am + gear + carb
##
         Df Sum of Sq
                         RSS
## - vs
               0.2685 147.84 66.973
          1
               0.5201 148.09 67.028
## - carb 1
## - gear 1
             1.8211 149.40 67.308
## - drat 1
              1.9826 149.56 67.342
## - disp 1
               3.9009 151.47 67.750
## - hp
          1
               7.3632 154.94 68.473
## <none>
                      147.57 68.915
## - qsec 1
              10.0933 157.67 69.032
## - am
          1
              11.8359 159.41 69.384
## - wt
          1
              27.0280 174.60 72.297
##
## Step: AIC=66.97
## mpg ~ disp + hp + drat + wt + qsec + am + gear + carb
##
##
         Df Sum of Sq
                         RSS
               0.6855 148.53 65.121
## - carb 1
               2.1437 149.99 65.434
## - gear 1
## - drat 1
             2.2139 150.06 65.449
             3.6467 151.49 65.753
## - disp 1
## - hp
          1
               7.1060 154.95 66.475
## <none>
                      147.84 66.973
              11.5694 159.41 67.384
## - am
          1
## - qsec 1
              15.6830 163.53 68.200
              27.3799 175.22 70.410
## - wt
          1
##
## Step: AIC=65.12
## mpg ~ disp + hp + drat + wt + qsec + am + gear
##
                         RSS
##
         Df Sum of Sq
                                AIC
## - gear 1
             1.565 150.09 63.457
                1.932 150.46 63.535
## - drat 1
## <none>
                      148.53 65.121
## - disp 1
              10.110 158.64 65.229
## - am
              12.323 160.85 65.672
          1
## - hp
          1
               14.826 163.35 66.166
## - qsec 1
               26.408 174.94 68.358
## - wt
          1
               69.127 217.66 75.350
##
## Step: AIC=63.46
## mpg ~ disp + hp + drat + wt + qsec + am
##
         Df Sum of Sq
                         RSS
## - drat 1
                3.345 153.44 62.162
## - disp 1
                8.545 158.64 63.229
## <none>
                      150.09 63.457
## - hp
             13.285 163.38 64.171
          1
```

```
\#\# - am
           1
                20.036 170.13 65.466
                25.574 175.67 66.491
## - qsec 1
## - wt
           1
                67.572 217.66 73.351
##
## Step: AIC=62.16
## mpg \sim disp + hp + wt + qsec + am
##
##
          Df Sum of Sq
                          RSS
## - disp 1
                 6.629 160.07 61.515
## <none>
                       153.44 62.162
## - hp
                12.572 166.01 62.682
           1
                26.470 179.91 65.255
## - qsec 1
## - am
           1
                32.198 185.63 66.258
                69.043 222.48 72.051
## - wt
           1
##
## Step: AIC=61.52
## mpg \sim hp + wt + qsec + am
##
##
          Df Sum of Sq
                          RSS
                                  AIC
## - hp
                9.219 169.29 61.307
## <none>
                       160.07 61.515
## - qsec 1
                20.225 180.29 63.323
## - am
           1
                25.993 186.06 64.331
                78.494 238.56 72.284
## - wt
           1
##
## Step: AIC=61.31
## mpg \sim wt + qsec + am
##
          Df Sum of Sq
                          RSS
##
## <none>
                       169.29 61.307
                26.178 195.46 63.908
## - am
        1
## - qsec 1
               109.034 278.32 75.217
## - wt
           1
               183.347 352.63 82.790
```

summary(modelo_step)

```
##
## lm(formula = mpg ~ wt + qsec + am, data = mtcars)
##
## Residuals:
      Min
               1Q Median
                               3Q
## -3.4811 -1.5555 -0.7257 1.4110 4.6610
## Coefficients:
              Estimate Std. Error t value Pr(>|t|)
## (Intercept)
                9.6178
                          6.9596 1.382 0.177915
## wt
               -3.9165
                           0.7112 -5.507 6.95e-06 ***
                           0.2887
                                    4.247 0.000216 ***
## qsec
                1.2259
## am
                2.9358
                           1.4109
                                    2.081 0.046716 *
## ---
## Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' 1
## Residual standard error: 2.459 on 28 degrees of freedom
## Multiple R-squared: 0.8497, Adjusted R-squared: 0.8336
## F-statistic: 52.75 on 3 and 28 DF, p-value: 1.21e-11
```

Interpretación:

- stepAIC elimina variables que no mejoran el AIC.
- El summary() del modelo final muestra las variables retenidas y su significancia.
- Puedes comparar el AIC y el \mathbb{R}^2 ajustado del modelo final contra el completo.

1.4. Verificación de supuestos

El ajuste de un modelo de regresión no garantiza su validez. Es indispensable verificar los supuestos clásicos y, si se violan, aplicar correcciones o transformaciones.

- 1. Supuesto de normalidad
- Gráfico: QQ-plot de residuales.
- Pruebas: Shapiro-Wilk, Kolmogorov-Smirnov, Jarque-Bera.

```
shapiro.test(resid(modelo))
```

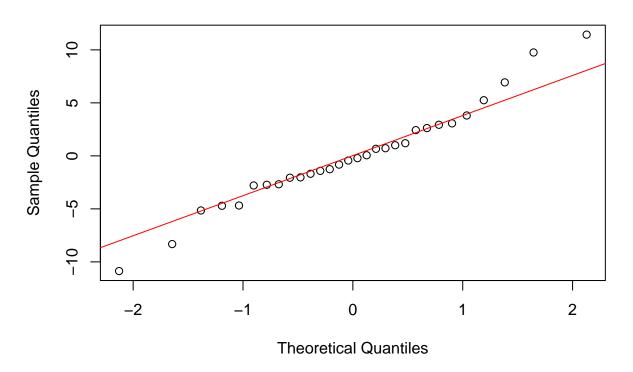
```
##
## Shapiro-Wilk normality test
##
## data: resid(modelo)
## W = 0.97319, p-value = 0.6297

ks.test(resid(modelo), "pnorm", mean=0, sd=sd(resid(modelo)))

##
## Exact one-sample Kolmogorov-Smirnov test
##
## data: resid(modelo)
## D = 0.11043, p-value = 0.8191
## alternative hypothesis: two-sided

qqnorm(resid(modelo)); qqline(resid(modelo), col="red")
```

Normal Q-Q Plot



- 2. Supuesto de homocedasticidad
- Gráfico: Residuales vs ajustados (esperamos nube horizontal).
- Prueba formal: Breusch-Pagan (bptest), White test.

```
library(lmtest)
bptest(modelo) # HO: varianza constante
```

```
##
## studentized Breusch-Pagan test
##
## data: modelo
## BP = 4.7819, df = 1, p-value = 0.02876
```

- 3. Supuesto de independencia
- Series de tiempo: revisar autocorrelación en los residuales (ACF, PACF).
- Prueba formal: Durbin-Watson (dwtest).

```
dwtest(modelo) # HO: no autocorrelación
```

```
##
## Durbin-Watson test
##
## data: modelo
## DW = 2.2928, p-value = 0.7309
## alternative hypothesis: true autocorrelation is greater than 0
```

- 4. Supuesto de ausencia de multicolinealidad
- Diagnóstico: factores de inflación de varianza (VIF).

```
library(car)
vif(modelo_multi)
```

```
## wt hp disp
## 4.844618 2.736633 7.324517
```

5. Bondad de ajuste

```
y <- rpois(100, lambda = 3)
obs <- table(factor(y, levels=0:8))
esp <- dpois(0:8, lambda=3) * length(y)
chisq.test(obs, p=esp/sum(esp))</pre>
```

```
## Warning in chisq.test(obs, p = esp/sum(esp)): Chi-squared approximation may be
## incorrect

##
## Chi-squared test for given probabilities
##
## data: obs
## X-squared = 5.426, df = 8, p-value = 0.7112
```

2. Procesos Estocasticos en R

Un proceso estocástico es una colección de variables aleatorias indexadas por el tiempo (discreto o continuo) que describe la evolución de un sistema incierto. Estos modelos son fundamentales en estadística, finanzas, actuaría y ciencias de datos, pues permiten:

- Modelar fenómenos dependientes del tiempo (colas, inventarios, series financieras).
- Simular sistemas aleatorios con memoria (dependencia entre estados).
- Calcular distribuciones de probabilidades asociadas a eventos complejos.

En esta sección veremos algunos de los procesos más importantes y cómo implementarlos en R:

- Cadenas de Markov (procesos discretos sin memoria).
- Algoritmo Metropolis-Hastings (simulación de distribuciones con MCMC).
- Procesos de Poisson (modelan conteos en tiempo).
- Teoría de colas (aplicaciones en servicios e infraestructura).

2.1. Cadenas de Markov

Una Cadena de Markov es un proceso estocástico discreto con la propiedad de Markov:

$$\Pr(X_{n+1} = j \mid X_n = i, X_{n-1}, \dots, X_0) = \Pr(X_{n+1} = j \mid X_n = i)$$

Es decir, el futuro solo depende del presente, no del pasado completo.

Componentes clave

- Espacio de estados: conjunto de valores posibles $\{1, 2, \dots, m\}$.
- Matriz de transición $P = [p_{ij}]$:

$$p_{ij} = \Pr(X_{n+1} = j \mid X_n = i), \quad \sum_{j} p_{ij} = 1$$

Ejemplo en R: simulación de una cadena

```
set.seed(123)
# Definimos matriz de transición
P \leftarrow matrix(c(0.7, 0.3,
                0.4,0.6), byrow=TRUE, nrow=2)
colnames(P) <- rownames(P) <- c("A", "B")</pre>
##
        Α
## A 0.7 0.3
## B 0.4 0.6
# Simulación de la cadena
n <- 20
X <- character(n)</pre>
X[1] \leftarrow "A" \# estado inicial
for (t in 2:n) {
  X[t] \leftarrow sample(c("A","B"), size=1, prob=P[X[t-1],])
X
```

```
## X
## A B
## 0.45 0.55
```

Ejemplo: cálculo de distribuciones a n pasos

La distribución de estados después de n pasos se obtiene con:

$$\pi^{(n)} = \pi^{(0)} P^n$$

donde $\pi^{(0)}$ es la distribución inicial.

```
library(expm)
```

```
## Loading required package: Matrix
##
## Attaching package: 'expm'
## The following object is masked from 'package:Matrix':
##
##
       expm
P \leftarrow matrix(c(0.7, 0.3,
              0.4,0.6), byrow=TRUE, nrow=2)
pi0 < -c(1,0)
                  # distribución inicial
pi5 <- pi0 %*% (P %^% 5) # P elevado a la 5
pi5
##
           [,1]
                    [,2]
## [1,] 0.57247 0.42753
```

2.2. Processo Poisson (simple, compuesto y no-homogeneo)

El Proceso de Poisson es uno de los procesos estocásticos más usados en probabilidad aplicada, seguros, colas y fenómenos de conteo. Modela la ocurrencia aleatoria de eventos en el tiempo (o en el espacio), bajo ciertas condiciones.

1) Proceso de Poisson simple (homogéneo)

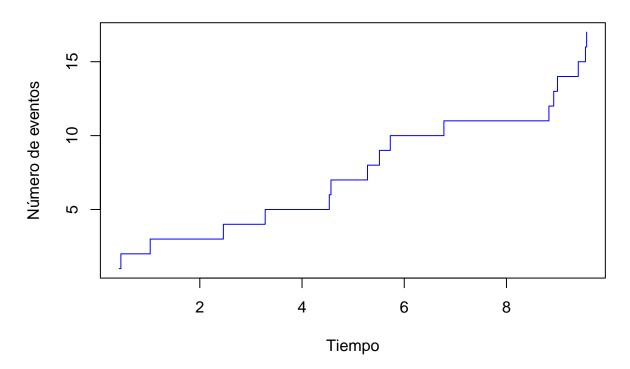
Definición: Un proceso $\{N(t), t \ge 0\}$ es un Proceso de Poisson de tasa $\lambda > 0$ si:

- 1. N(0) = 0.
- 2. Los incrementos son independientes.
- 3. El número de eventos en un intervalo de longitud t sigue una Poisson:

$$N(t) \sim \text{Poisson}(\lambda t)$$

Ejemplo en R: simulación de llegadas

Proceso de Poisson homogéneo



2) Proceso de Poisson compuesto

Aquí no solo interesa el número de llegadas, sino también la magnitud de cada evento.

Ejemplo típico: reclamos en seguros

- Llegadas de siniestros $\sim \text{Poisson}(\lambda t)$.
- Montos de siniestros Y_i i.i.d. con cierta distribución.
- El costo total en [0, t] es:

$$S(t) = \sum_{i=1}^{N(t)} Y_i$$

Ejemplo en R: siniestros con montos exponenciales

```
set.seed(123)
lambda <- 3
Tmax <- 5
n <- rpois(1, lambda * Tmax) # número de siniestros
tiempos <- sort(runif(n, 0, Tmax))</pre>
```

```
montos <- rexp(n, rate=0.5) # montos ~ Exp(media=2)

S_total <- sum(montos)
c("Número de siniestros"=n, "Costo total"=S_total)</pre>
```

Número de siniestros Costo total ## 12.00000 21.45492

3) Proceso de Poisson no homogéneo

Ahora la tasa $\lambda(t)$ depende del tiempo. La intensidad acumulada es:

$$\Lambda(t) = \int_0^t \lambda(u) \, du$$

у

$$N(t) \sim \text{Poisson}(\Lambda(t))$$

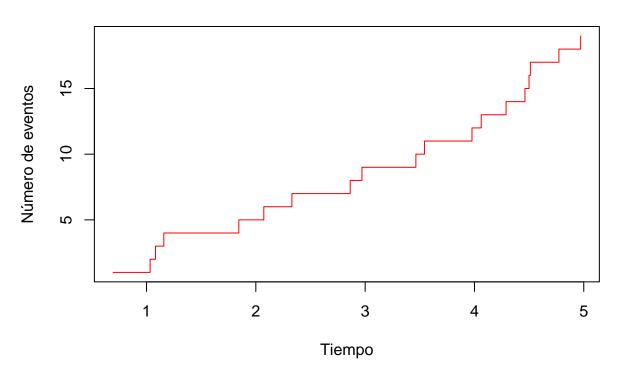
Ejemplo en R: tasa creciente en el tiempo

Supongamos $\lambda(t) = 2 + t$ en [0, 5].

$$\Lambda(t) = \int_0^t (2+u) \, du = 2t + \frac{1}{2}t^2$$

```
set.seed(123)
Tmax <- 5
# Lambda (Tmax)
Lambda \leftarrow function(t) 2*t + 0.5*t^2
# Número de eventos ~ Poisson(Lambda(Tmax))
n <- rpois(1, Lambda(Tmax))</pre>
# Método de aceptación-rechazo para generar los tiempos
tiempos <- c()
while(length(tiempos) < n){</pre>
  t_cand <- runif(1, 0, Tmax)
  if(runif(1) < (2+t cand)/max(2+0:Tmax)) {
    tiempos <- c(tiempos, t_cand)</pre>
  }
}
tiempos <- sort(tiempos)</pre>
plot(tiempos, 1:length(tiempos), type="s", col="red",
     main="Proceso de Poisson no homogéneo ",
     xlab="Tiempo", ylab="Número de eventos")
```

Proceso de Poisson no homogéneo



3. Aplicaciones y extras

Esta sección tiene como objetivo mostrar algunas herramientas prácticas que complementan lo visto en regresión y procesos estocásticos. Incluye paquetes actuariales muy utilizados en el mundo profesional y una nota final sobre cómo aprovechar ChatGPT como apoyo en el aprendizaje y programación en R.

3.1. Paquetes actuariales en R

En ciencias actuariales, existen paquetes especializados que permiten trabajar con seguros de vida, pensiones, tablas de mortalidad y cálculos de riesgo.

Paquete lifecontingencies

- Permite trabajar con tablas de mortalidad y seguros de vida.
- Funciones para calcular valores esperados de beneficios, primas netas, valores actuariales.

Ejemplo en R:

```
library(lifecontingencies)
```

```
## Package: lifecontingencies
## Authors: Giorgio Alfredo Spedicato [aut, cre]
##
        (<https://orcid.org/0000-0002-0315-8888>),
      Christophe Dutang [ctb] (<a href="https://orcid.org/0000-0001-6732-1501">https://orcid.org/0000-0001-6732-1501</a>),
      Reinhold Kainhofer [ctb] (<a href="https://orcid.org/0000-0002-7895-1311">https://orcid.org/0000-0002-7895-1311</a>),
##
##
     Kevin J Owens [ctb],
##
     Ernesto Schirmacher [ctb],
##
      Gian Paolo Clemente [ctb] (<a href="https://orcid.org/0000-0001-6795-4595">https://orcid.org/0000-0001-6795-4595</a>),
##
      Ivan Williams [ctb]
## Version: 1.3.12
               2024-09-29 22:40:06 UTC
## BugReport: https://github.com/spedygiorgio/lifecontingencies/issues
# Tabla de mortalidad simplificada
data(soa08Act) # tabla incluida en el paquete
# Seguro de vida temporal: edad 40, n=10 años, i=2\%
Axn(soa08Act, x=40, n=10, i=0.02)
```

```
## [1] 0.03453723
```

Paquete actuar - Diseñado para modelar pérdidas y riesgos. - Incluye funciones para distribuciones actuariales (Pareto, Burr, etc.). - Herramientas para reaseguro, stop-loss, valores presentes.

Ejemplo en R:

```
library(actuar)
```

```
##
## Attaching package: 'actuar'
## The following objects are masked from 'package:stats':
##
## sd, var
```

```
## The following object is masked from 'package:grDevices':
##
##
# Distribución Pareto: densidad y simulación
x \leftarrow seq(0, 10, by=0.1)
plot(x, dpareto(x, shape=2, scale=1), type="l", col="blue")
      ^{\circ}
dpareto(x, shape = 2, scale = 1)
      5
      0
      S
      o.
      0.0
               0
                                2
                                                 4
                                                                                  8
                                                                                                  10
                                                                 6
                                                         Χ
```

```
# Simulación de pérdidas
sim <- rpareto(1000, shape=2, scale=1)
mean(sim); var(sim)</pre>
```

[1] 1.016329

[1] 6.541536

3.2. Uso de ChatGPT como apoyo en programación y estadística en R

Hoy en día, herramientas de IA como ChatGPT son un gran aliado para aprender y trabajar en R:

- Apoyo en programación:
 - Depuración de errores de código.
 - Explicación de funciones y paquetes.
 - Generación de ejemplos prácticos.
- Apoyo en estadística y probabilidad:
 - Explicación de conceptos teóricos con ejemplos.
 - Creación de ejercicios personalizados.
 - Interpretación de resultados de salida en R.

Ejemplo práctico de uso en clase:

- Formular en ChatGPT: "Explícame cómo funciona la prueba Breusch–Pagan en R y dame un ejemplo con código reproducible".
- Recibirás un bloque de código funcional + interpretación.

La IA no reemplaza el criterio profesional. Se debe usar como apoyo, no como sustituto del razonamiento crítico ni de la validación estadística.