Ejemplo: Problema de mortalidad de insectos

(Dobson (1990))

La siguiente tabla muestra en número de insectos muertos después de 5 horas de exposición a gas insectMortalitybónico a distintas concentraciones. La gráfica presenta la proporción de insectos muertos (\(y_i/n_i\)) como función de la dosis.

Variable Descripción
\(x_i\) dosis
\(n_i\) número de insectos
\(y_i\) número de muertos

Lectura de datos y insectMortalityacterísticas de los mismos:

dat <-  insectMortality <- read.csv("../RM_tema_8/insectMortality.dat", sep="")
dim(insectMortality)
## [1] 8 3
str(insectMortality)
## 'data.frame':    8 obs. of  3 variables:
##  $ x: num  1.69 1.72 1.76 1.78 1.81 ...
##  $ n: int  59 60 62 56 63 59 62 60
##  $ y: int  6 13 18 28 52 53 61 60
head(insectMortality)
##        x  n  y
## 1 1.6907 59  6
## 2 1.7242 60 13
## 3 1.7552 62 18
## 4 1.7842 56 28
## 5 1.8113 63 52
## 6 1.8369 59 53
summary(insectMortality)
##        x               n               y        
##  Min.   :1.691   Min.   :56.00   Min.   : 6.00  
##  1st Qu.:1.747   1st Qu.:59.00   1st Qu.:16.75  
##  Median :1.798   Median :60.00   Median :40.00  
##  Mean   :1.793   Mean   :60.12   Mean   :36.38  
##  3rd Qu.:1.843   3rd Qu.:62.00   3rd Qu.:54.75  
##  Max.   :1.884   Max.   :63.00   Max.   :61.00

Modelo logit:

x <- dat$x
y <- dat$y/dat$n
mod1 <- glm(y~x, family = binomial("logit"), weights = dat$n)
print(summary(mod1))
## 
## Call:
## glm(formula = y ~ x, family = binomial("logit"), weights = dat$n)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -1.5941  -0.3944   0.8329   1.2592   1.5940  
## 
## Coefficients:
##             Estimate Std. Error z value Pr(>|z|)
## (Intercept)  -60.717      5.181  -11.72   <2e-16
## x             34.270      2.912   11.77   <2e-16
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 284.202  on 7  degrees of freedom
## Residual deviance:  11.232  on 6  degrees of freedom
## AIC: 41.43
## 
## Number of Fisher Scoring iterations: 4

valor-p=0.0815

Modelo probit:

mod2 <- glm(y~x, family = binomial("probit"), weights = dat$n)
print(summary(mod2))
## 
## Call:
## glm(formula = y ~ x, family = binomial("probit"), weights = dat$n)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -1.5714  -0.4703   0.7501   1.0632   1.3449  
## 
## Coefficients:
##             Estimate Std. Error z value Pr(>|z|)
## (Intercept)  -34.935      2.648  -13.19   <2e-16
## x             19.728      1.487   13.27   <2e-16
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 284.20  on 7  degrees of freedom
## Residual deviance:  10.12  on 6  degrees of freedom
## AIC: 40.318
## 
## Number of Fisher Scoring iterations: 4

valor-p=0.1197

Modelo valor extremo:

mod3 <- glm(y~x, family = binomial("cloglog"), weights = dat$n)
print(summary(mod3))
## 
## Call:
## glm(formula = y ~ x, family = binomial("cloglog"), weights = dat$n)
## 
## Deviance Residuals: 
##      Min        1Q    Median        3Q       Max  
## -0.80329  -0.55135   0.03089   0.38315   1.28883  
## 
## Coefficients:
##             Estimate Std. Error z value Pr(>|z|)
## (Intercept)  -39.572      3.240  -12.21   <2e-16
## x             22.041      1.799   12.25   <2e-16
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 284.2024  on 7  degrees of freedom
## Residual deviance:   3.4464  on 6  degrees of freedom
## AIC: 33.644
## 
## Number of Fisher Scoring iterations: 4

valor-p=0.7519

##    dosis  n yobs     logit    probit  cloglog
## 1 1.6907 59    6  3.457461  3.357774  5.58945
## 2 1.7242 60   13  9.841672 10.721610 11.28068
## 3 1.7552 62   18 22.451378 23.481932 20.95422
## 4 1.7842 56   28 33.897635 33.815505 30.36944
## 5 1.8113 63   52 50.095822 49.615626 47.77642
## 6 1.8369 59   53 53.290913 53.318874 54.14273
## 7 1.8610 62   61 59.222159 59.664650 61.11331
## 8 1.8839 60   60 58.742961 59.227967 59.94723
## Devianza.
## [1] 11.232231 10.119758  3.446439