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Lab01 — Urna 0/1: X = max, Y = min

2025-08-24

Ejercicio: Máximo y mínimo de dos extracciones Bernoulli
Planteamiento
Sean A, B

i.i.d.∼ Bernoulli(p) con 0 < p < 1. Definimos

X = max{A, B}, Y = min{A, B}.

Objetivos
1. Derivar (o recordar) la f.m.p. conjunta fX,Y (x, y) y las marginales fX , fY .

Simulación en R
Ajusta los parámetros si lo deseas y vuelve a ejecutar la celda.
N <- 100000 # tamaño de simulación
p <- 0.5 # parámetro Bernoulli
seed <- 123 # semilla
set.seed(seed)

a) F.M.P. conjunta y marginales (empíricas vs teóricas)

# Simulación de A,B y construcción de X,Y
a <- rbinom(N, 1, p)
b <- rbinom(N, 1, p)
X <- pmax(a, b)
Y <- pmin(a, b)

# Rejillas y fmp empírica
xs <- 0:1; ys <- 0:1
pmf_emp <- prop.table(table(factor(X, levels = xs), factor(Y, levels = ys)))

# FMP teórica (p genérico)
pmf_th <- matrix(c((1-p)ˆ2, 0,

2*p*(1-p), pˆ2),
nrow = 2, byrow = TRUE,
dimnames = list(X = as.character(xs), Y = as.character(ys)))

# Marginales
margX_emp <- rowSums(pmf_emp)
margY_emp <- colSums(pmf_emp)
margX_th <- c(`0` = (1-p)ˆ2, `1` = 1 - (1-p)ˆ2)
margY_th <- c(`0` = 1 - pˆ2, `1` = pˆ2)
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cat("FMP empírica:\n"); print(round(pmf_emp, 4))

## FMP empírica:

##
## 0 1
## 0 0.2499 0.0000
## 1 0.5027 0.2474
cat("FMP teórica:\n"); print(round(pmf_th, 4))

## FMP teórica:

## Y
## X 0 1
## 0 0.25 0.00
## 1 0.50 0.25
cat("Marginales empíricas X, Y:\n"); print(round(margX_emp,4)); print(round(margY_emp,4))

## Marginales empíricas X, Y:

## 0 1
## 0.2499 0.7501

## 0 1
## 0.7526 0.2474
cat("Marginales teóricas X, Y:\n"); print(round(margX_th,4)); print(round(margY_th,4))

## Marginales teóricas X, Y:

## 0 1
## 0.25 0.75

## 0 1
## 0.75 0.25

b) Visualización rápida

# Vectorizamos en el orden deseado: (X=0,Y=0), (X=0,Y=1), (X=1,Y=0), (X=1,Y=1)
labels <- c("X=0,Y=0","X=0,Y=1","X=1,Y=0","X=1,Y=1")
pmf_emp_vec <- c(pmf_emp["0","0"], pmf_emp["0","1"], pmf_emp["1","0"], pmf_emp["1","1"])
pmf_th_vec <- c(pmf_th["0","0"], pmf_th["0","1"], pmf_th["1","0"], pmf_th["1","1"])

bars <- rbind(Empirica = pmf_emp_vec, Teorica = pmf_th_vec)
bp <- barplot(beside = TRUE, height = bars, names.arg = labels,

ylab = "Probabilidad", main = "f.m.p. conjunta: empírica vs teórica")
legend("topright", legend = rownames(bars), fill = gray.colors(2), bty = "n")
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lab02Computo — Simulación (Problema 10)

Carla Reyes

30 de agosto de 2025

Contents
Objetivo 1

Código 1
Funciones auxiliares . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Ejecutar la simulación . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

Objetivo
Estimaremos por simulación la probabilidad de que todos los valores propios de la matriz

∆ =

a c 0
b a c
0 b a


sean reales, cuando las entradas a, b, c se generan independientemente con distribución Uniforme(-1,1).

Código
Funciones auxiliares

# Construye la matriz Delta para un triplete (a,b,c)
make_delta <- function(a, b, c) {

matrix(c(a, c, 0,
b, a, c,
0, b, a), nrow = 3, byrow = TRUE)

}

# Revisa si todos los eigenvalores son reales (tolerancia numérica)
all_eigs_real <- function(M, tol = 1e-10) {

vals <- eigen(M, only.values = TRUE)$values
max(abs(Im(vals))) < tol

}

# Simulación directa:
# 1) Genera (a,b,c) ~ i.i.d. Unif(-1,1)
# 2) Construye Delta
# 3) Calcula eigenvalores y verifica si todos son reales
# 4) Repite N veces y devuelve la proporción (p-hat)
simulate_prob <- function(N = 10000) {
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a <- runif(N, -1, 1)
b <- runif(N, -1, 1)
c <- runif(N, -1, 1)

ok <- logical(N)
for (i in seq_len(N)) {

M <- make_delta(a[i], b[i], c[i])
ok[i] <- all_eigs_real(M)

}

mean(ok) # devuelve solo p-hat
}

Ejecutar la simulación
Ajusta N para mayor precisión (más grande = más lento).

N <- 10000
p_hat <- simulate_prob(N)
p_hat

## [1] 0.499
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lab03 — Problema 7: Simulación de P(X = 1 | Y > 0)

Carla Reyes

7 de septiembre de 2025

Contents
Enunciado 1

Código 1
Funciones . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Correr la simulación . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

Enunciado
Sea X ∈ {−1, 1} con P(X = 1) = 1/3 y Z ∼ N(0, 1) independiente de X. Defina Y = Z + X. Estimar por
simulación P(X = 1 | Y > 0).

Código
Funciones
simulate_prob7 <- function(N = 1e6) {

# X: +1 con prob 1/3, -1 con prob 2/3
X <- sample(c(1, -1), size = N, replace = TRUE, prob = c(1/3, 2/3))
# Z ~ N(0,1)
Z <- rnorm(N)
Y <- Z + X
idx <- Y > 0
n_pos <- sum(idx)
if (n_pos == 0) stop("No hubo Y>0; incrementa N.")
phat <- mean(X[idx] == 1)
list(N = N, n_pos = n_pos, p_hat = phat)

}

Correr la simulación
Puedes ajustar N si quieres mayor precisión (más grande = más lento).

N <- 1e6
res <- simulate_prob7(N)
res

## $N
## [1] 1e+06
##
## $n_pos
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## [1] 387298
##
## $p_hat
## [1] 0.7262366

Reporte claro

cat(sprintf("n total: %d | n(Y>0): %d\n", res$N, res$n_pos))

## n total: 1000000 | n(Y>0): 387298

cat(sprintf("Estimación: p_hat = %.6f\n", res$p_hat))

## Estimación: p_hat = 0.726237
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Lab 05 Cómputo — Simulación (Problema 5)

Carla Reyes

Problema 5 del laboratorio 5
Una urna contiene tres bolas numeradas 1, 2 y 3. Se extraen dos bolas sin reemplazo.
Sea X el número de la primera bola extraída y Y el número de la segunda.
Se pide calcular Cov(X, Y ) y ρXY .

Simulación

set.seed(123456)

B <- 2e5 # número de repeticiones
# Simulamos extracciones sin reemplazo de {1,2,3}
X <- integer(B)
Y <- integer(B)

for (b in seq_len(B)) {
s <- sample(1:3, size = 2, replace = FALSE)
X[b] <- s[1]
Y[b] <- s[2]

}

# Estimadores empíricos
EX <- mean(X);
EY <- mean(Y)
VarX <- var(X);
VarY <- var(Y)
CovXY <- cov(X, Y)
RhoXY <- cor(X, Y)

c(EX=EX, EY=EY, VarX=VarX, VarY=VarY, CovXY=CovXY, RhoXY=RhoXY)

## EX EY VarX VarY CovXY RhoXY
## 2.0016250 1.9987950 0.6658657 0.6678169 -0.3336797 -0.5003890

Conclusión
Tanto la derivación analítica como la simulación confirman que:
- Cov(X, Y ) = − 1

3
- ρXY = − 1

2
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La correlación negativa surge de que no hay reemplazo: si la primera bola es alta, se reduce la
probabilidad de que la segunda también lo sea.
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lab06Computo — Simulación y verificación (Problema 4)

Carla Reyes

2025-09-28

Contents
1 Enunciado (Problema 4) 1

2 Construcción de la distribución y simulación 1
2.1 Tabla de probabilidades . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
2.2 Simulación . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

3 Verificación analítica: medias, covarianza y dependencia 2
3.1 Demostración de dependencia (no independencia) . . . . . . . . . . . . . . . . . . . . . . . . 3

4 Comentarios finales 4

1 Enunciado (Problema 4)
Sean Y1 y Y2 variables aleatorias discretas con f.d.p. conjunta dada por la tabla:

Y1 = −1 Y1 = 0 Y1 = 1
Y2 = −1 1/16 3/16 1/16
Y2 = 0 3/16 0 3/16
Y2 = 1 1/16 3/16 1/16

Se pide mostrar que Y1 y Y2 son dependientes pero tienen covarianza 0, y realizar una simulación
que ilustre el resultado.

2 Construcción de la distribución y simulación

library(dplyr)

2.1 Tabla de probabilidades

# Valores posibles
valores <- expand.grid(

Y1 = c(-1, 0, 1),
Y2 = c(-1, 0, 1)

)

# Probabilidades según la tabla (orden: por filas de Y2: -1,0,1; y por columnas de Y1: -1,0,1)
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valores$prob <- c(1,3,1, 3,0,3, 1,3,1) / 16

valores

## Y1 Y2 prob
## 1 -1 -1 0.0625
## 2 0 -1 0.1875
## 3 1 -1 0.0625
## 4 -1 0 0.1875
## 5 0 0 0.0000
## 6 1 0 0.1875
## 7 -1 1 0.0625
## 8 0 1 0.1875
## 9 1 1 0.0625

Comprobamos que suma a 1:
sum(valores$prob)

## [1] 1

2.2 Simulación

set.seed(20250928) # fija semilla para replicabilidad

n <- 20000 # tamaño de muestra simulada

# Muestreo de pares (Y1, Y2) con sus probabilidades
sim_idx <- sample.int(n = nrow(valores), size = n, replace = TRUE, prob = valores$prob)
sim <- valores[sim_idx, c("Y1","Y2")]

head(sim)

## Y1 Y2
## 2 0 -1
## 4 -1 0
## 2.1 0 -1
## 7 -1 1
## 3 1 -1
## 4.1 -1 0

3 Verificación analítica: medias, covarianza y dependencia

# Marginales exactos
marg_Y1 <- sim %>%

count(Y1, name = "n") %>%
mutate(p = n / sum(n))

marg_Y2 <- sim %>%
count(Y2, name = "n") %>%
mutate(p = n / sum(n))

marg_Y1; marg_Y2
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## Y1 n p
## 1 -1 6222 0.31110
## 2 0 7527 0.37635
## 3 1 6251 0.31255

## Y2 n p
## 1 -1 6257 0.31285
## 2 0 7439 0.37195
## 3 1 6304 0.31520

# Medias y covarianza empíricas (se aproximan a las verdaderas)
media_Y1_emp <- mean(sim$Y1)
media_Y2_emp <- mean(sim$Y2)
cov_emp <- cov(sim$Y1, sim$Y2)

list(media_Y1_emp = media_Y1_emp,
media_Y2_emp = media_Y2_emp,
covarianza_empirica = cov_emp)

## $media_Y1_emp
## [1] 0.00145
##
## $media_Y2_emp
## [1] 0.00235
##
## $covarianza_empirica
## [1] 0.002296707

Resultado teórico esperado: E[Y1] = 0, E[Y2] = 0 y Cov(Y1, Y2) = 0. Abajo confirmamos de forma
exacta con operaciones simbólicas sobre la distribución.
# Cálculo exacto con la tabla (sin depender de la simulación)
tab <- valores

EY1 <- sum(tab$Y1 * tab$prob)
EY2 <- sum(tab$Y2 * tab$prob)
EY1Y2 <- sum(tab$Y1 * tab$Y2 * tab$prob)
CovY1Y2 <- EY1Y2 - EY1 * EY2

data.frame(EY1, EY2, EY1Y2, CovY1Y2)

## EY1 EY2 EY1Y2 CovY1Y2
## 1 0 0 0 0

3.1 Demostración de dependencia (no independencia)
Para independencia debería cumplirse P (Y1 = y1, Y2 = y2) = P (Y1 = y1) P (Y2 = y2) para todos los pares
(y1, y2). Basta encontrar un contraejemplo:
# Prob conjunto de (Y1=0, Y2=0):
p_joint_00 <- tab %>% filter(Y1==0, Y2==0) %>% pull(prob)

# Prob marginales
p_Y1_0 <- tab %>% filter(Y1==0) %>% summarise(p = sum(prob)) %>% pull(p)
p_Y2_0 <- tab %>% filter(Y2==0) %>% summarise(p = sum(prob)) %>% pull(p)

data.frame(
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P_Y1_eq_0 = p_Y1_0,
P_Y2_eq_0 = p_Y2_0,
P_joint_00 = p_joint_00,
Prod_marginales = p_Y1_0 * p_Y2_0

)

## P_Y1_eq_0 P_Y2_eq_0 P_joint_00 Prod_marginales
## 1 0.375 0.375 0 0.140625

Observa que P (Y1 = 0, Y2 = 0) = 0 mientras que P (Y1 = 0) P (Y2 = 0) > 0. Luego no son independientes
(aunque la covarianza sea 0).

4 Comentarios finales
• La covarianza nula no implica independencia.
• Este ejemplo ilustra cómo dos variables pueden ser dependientes (fallan las igualdades de independencia)

pero tener correlación cero.
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lab07Computo — Simulación del Problema 7

Carla Reyes

05 Oct 2025

Enunciado
En un centro de atención telefónica, cada agente atiende llamadas de forma continua hasta que decide tomar
un descanso.
- La duración de cada llamada es i.i.d. Exponencial con parámetro λ = 0.2 y es independiente de las
demás.
- El número total de llamadas N que atiende el agente es por lo menos 5 y se distribuye Geométrica
con parámetro p = 0.3, independiente de las duraciones.
- Interpretamos esto como N = 5 + G, donde G ∼ Geom(p) con soporte {0, 1, 2, . . .} (número de fracasos
antes del primer éxito).

Se pide calcular el valor esperado y la varianza de la duración total T =
∑N

i=1 Xi; y verificar por
simulación.

Derivación teórica
Sea X ∼ Exp(λ), entonces E[X] = 1

λ y Var(X) = 1
λ2 .

Para G ∼ Geom(p) en {0, 1, 2, . . .}: E[G] = 1−p
p y Var(G) = 1−p

p2 .

Como N = 5 + G,
E[N ] = 5 + 1 − p

p
, Var(N) = 1 − p

p2 .

Usando la fórmula de suma aleatoria con independencia (T =
∑N

i=1 Xi):

E[T ] = E[N ]E[X], Var(T ) = E[N ] Var(X) + Var(N) (E[X])2.

Sustituyendo E[X] = 1/λ y Var(X) = 1/λ2:

E[T ] = E[N ]
λ

, Var(T ) = E[N ] + Var(N)
λ2 .

Con p = 0.3 y λ = 0.2:
p <- 0.3
lam <- 0.2
EN <- 5 + (1 - p)/p
VarN <- (1 - p)/pˆ2
ET_theory <- EN / lam
VarT_theory <- (EN + VarN) / lamˆ2
list(E_N = EN, Var_N = VarN, E_T = ET_theory, Var_T = VarT_theory,

sd_T = sqrt(VarT_theory))

1



## $E_N
## [1] 7.333333
##
## $Var_N
## [1] 7.777778
##
## $E_T
## [1] 36.66667
##
## $Var_T
## [1] 377.7778
##
## $sd_T
## [1] 19.43651

Resultados teóricos esperados: - E[N ] = 7.3 - Var(N) = 7.7 - E[T ] = 36.6 - Var(T ) = 377.7

(Unidades en minutos si la tasa λ está dada en llamadas por minuto.)

Verificación por simulación (Monte Carlo)
Simulamos B réplicas. En cada réplica: 1. Generamos G ∼ Geom(p) y calculamos N = 5 + G. 2. Sumamos
N duraciones exponenciales i.i.d. Xi ∼ Exp(λ). 3. Guardamos T =

∑N
i=1 Xi.

set.seed(7)
B <- 1e5

# Muestras de N = 5 + G, con G ~ Geom(p) (soporte 0,1,2,...)
N <- 5 + rgeom(B, prob = p)

# Función que simula una suma de exponentiales con N_i términos
sim_T <- function(n, rate) {

if (n <= 0) return(0)
sum(rexp(n, rate = rate))

}

# Vector con T simulados
T_vals <- sapply(N, sim_T, rate = lam)

c(
mean_T = mean(T_vals),
var_T = var(T_vals),
mean_N = mean(N),
var_N = var(N)

)

## mean_T var_T mean_N var_N
## 36.727848 381.684951 7.327820 7.755432

Comparación teoría vs simulación

data.frame(
Magnitud = c("E[N]", "Var[N]", "E[T]", "Var[T]"),
Teoría = c(EN, VarN, ET_theory, VarT_theory),
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Simulación = c(mean(N), var(N), mean(T_vals), var(T_vals))
)

## Magnitud Teoría Simulación
## 1 E[N] 7.333333 7.327820
## 2 Var[N] 7.777778 7.755432
## 3 E[T] 36.666667 36.727848
## 4 Var[T] 377.777778 381.684951

Visualización
Distribución aproximada de T (histograma) y una marca en la media teórica:
hist(T_vals, breaks = 60, main = "Distribución simulada de T",

xlab = "T (minutos)", probability = TRUE)
abline(v = ET_theory, lwd = 2, lty = 2)

Distribución simulada de T

T (minutos)

D
en

si
ty

0 50 100 150 200 250 300

0.
00

0
0.

01
0

0.
02

0

3



labComputo08

Carla Reyes

2025-10-12

Sesión 08 — Simulación del Problema 1
Considere un dado honesto lanzado 7 veces de manera independiente. Calcule la probabilidad de que cada
una de las caras 2,3,4,5,6 aparezca exactamente una vez, condicionando a que la cara 1 salió
exactamente dos veces.

Simulación (200000 intentos)
Hacemos 200000 intentos. En cada intento simulamos 7 lanzamientos. Si en los 7 hay exactamente dos
caras 1, revisamos si las otras 5 caras son 2,3,4,5,6 cada una una sola vez. La estimación es:

p̂ = #{intentos con 2 unos y con {2, 3, 4, 5, 6}}
#{intentos con exactamente 2 unos} .

B <- 200000

# Simulamos B intentos de 7 lanzamientos cada uno
lanz <- matrix(sample(1:6, size = 7*B, replace = TRUE), ncol = 7)

# Filtramos los intentos con exactamente dos "1"
cond_idx <- rowSums(lanz == 1) == 2
n_cond <- sum(cond_idx)

# Entre los condicionados, verificamos si las otras 5 caras son {2,3,4,5,6}
es_exacto_2a6 <- function(fila) {

v <- fila[fila != 1] # quita los "1", quedan 5 valores
# ¿Son exactamente 2,3,4,5,6 cada uno una sola vez?
all(sort(v) == 2:6)

}

ok <- apply(lanz[cond_idx, , drop = FALSE], 1, es_exacto_2a6)
n_ok <- sum(ok)

p_hat <- if (n_cond > 0) n_ok / n_cond else NA_real_

data.frame(
intentos_totales = B,
intentos_condicionados = n_cond,
exitos = n_ok,
p_estimada = p_hat

)

## intentos_totales intentos_condicionados exitos p_estimada

1



## 1 2e+05 47128 1809 0.03838482

2



lab09Computo

Carla Reyes

2025-10-19

Problema 1 del Laboratorio 9
Sea \(Y_1 \sim \mathrm{Bin}(n_1, p_1=0.2)\) y \(Y_2 \sim \mathrm{Bin}(n_2, p_2=0.8)\), indepen-
dientes. Hay que estudiar la distribución de \[ Z \,=\, Y_1 + n_2 - Y_2. \]

Resultado teórico: Como \(n_2 - Y_2 \sim \mathrm{Bin}(n_2, 0.2)\) y es independiente de
\(Y_1\sim\mathrm{Bin}(n_1,0.2)\), se tiene que \(Z = (n_2 - Y_2) + Y_1 \sim \mathrm{Bin}(n_1 +
n_2, 0.2)\).

Parámetros

set.seed(1704)
n1 <- 5
n2 <- 8
p1 <- 0.2
p2 <- 0.8
reps <- 1e5 # número de muestras

Simulación

# Genera muestras
Y1 <- rbinom(reps, size = n1, prob = p1)
Y2 <- rbinom(reps, size = n2, prob = p2)

Z <- Y1 + n2 - Y2

Resumen empírico vs teórico

# Soporte teórico de Z
k <- 0:(n1 + n2)

# Probabilidades teóricas si Z ~ Bin(n1+n2, 0.2)
theo_probs <- dbinom(k, size = n1 + n2, prob = 0.2)

# Probabilidades empíricas por simulación
obs_tab <- table(factor(Z, levels = k))
obs_probs <- as.numeric(obs_tab) / sum(obs_tab)

# Medias y varianzas
emp_mean <- mean(Z)
emp_var <- var(Z)
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th_mean <- (n1 + n2) * 0.2
th_var <- (n1 + n2) * 0.2 * 0.8

list(
media_empirica = emp_mean,
var_empirica = emp_var,
media_teorica = th_mean,
var_teorica = th_var

)

## $media_empirica
## [1] 2.60503
##
## $var_empirica
## [1] 2.08307
##
## $media_teorica
## [1] 2.6
##
## $var_teorica
## [1] 2.08

Comparación visual (barras)

library(ggplot2)

df_plot <- data.frame(
k = k,
Empirica = obs_probs,
Teorica = theo_probs

)

ggplot(df_plot, aes(x = k)) +
geom_col(aes(y = Empirica), width = 0.7, alpha = 0.6) +
geom_point(aes(y = Teorica)) +
labs(

title = "Distribución de Z = Y1 + n2 - Y2",
subtitle = paste0("n1=", n1, ", n2=", n2, ", p1=0.2, p2=0.8; réplicas=", reps),
x = "k",
y = "Probabilidad"

) +
theme_minimal()
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n1=5, n2=8, p1=0.2, p2=0.8; réplicas=1e+05

Distribución de Z = Y1 + n2 − Y2

Tabla compacta

head(data.frame(
k = k,
Prob_Empirica = round(obs_probs, 5),
Prob_Teorica = round(theo_probs, 5)

), 15)

## k Prob_Empirica Prob_Teorica
## 1 0 0.05425 0.05498
## 2 1 0.17909 0.17867
## 3 2 0.26501 0.26801
## 4 3 0.24962 0.24567
## 5 4 0.15264 0.15355
## 6 5 0.06888 0.06910
## 7 6 0.02300 0.02303
## 8 7 0.00614 0.00576
## 9 8 0.00122 0.00108
## 10 9 0.00014 0.00015
## 11 10 0.00001 0.00001
## 12 11 0.00000 0.00000
## 13 12 0.00000 0.00000
## 14 13 0.00000 0.00000

3



lab10Computo— Transformación Integral de Probabilidad

Carla Reyes

2025-10-29

Objetivo
Simular y verificar empíricamente el Teorema de la Transformación Integral de Probabilidad usando
una Exponencial con parámetro λ > 0: 1) Si U ∼ Unif(0, 1) y definimos X = F −1(U), entonces X ∼ F . 2)
Si X ∼ F y definimos U = F (X), entonces U ∼ Unif(0, 1).

Trabajaremos con la distribución Exponencial(λ) cuya función de distribución acumulada (FDA) es:

F (x) = 1 − e−λx, x ≥ 0, λ > 0.

La inversa generalizada de F es:

F −1(u) = − 1
λ

log(1 − u), u ∈ (0, 1).

Parámetros de simulación

n <- 100000 # tamaño de muestra
lambda <- 5 # parámetro de la Exponencial

Parte A: De Uniforme(0,1) a Exponencial(λ)

Idea: Generar U1, . . . , Un
iid∼ Unif(0, 1) y transformar Xi = F −1(Ui) = − log(1 − Ui)/λ. Se espera X ∼

Exp(λ).
# Muestras uniformes
U <- runif(n)

# Muestras visualización
hist(U, breaks = 80, probability = TRUE,

main = "Parte A (previa): U ~ Unif(0,1) antes de transformar",
xlab = "u", xlim = c(0, 1))

abline(h = 1, lwd = 2) # densidad de Unif(0,1)
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Parte A (previa): U ~ Unif(0,1) antes de transformar
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c(mean = mean(U), var = var(U),
expected_mean = 0.5, expected_var = 1/12)

## mean var expected_mean expected_var
## 0.50052451 0.08313908 0.50000000 0.08333333

# Transformación inversa: Exp(lambda)
X_from_U <- -log(1 - U) / lambda

# Comprobamos
# 1) Histograma con densidad teórica
hist(X_from_U, breaks = 80, probability = TRUE, main = "Parte A: X desde U vía Fˆ{-1}",

xlab = "x")
curve(lambda * exp(-lambda * x), from = 0, to = quantile(X_from_U, 0.99),

add = TRUE, lwd = 2)
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Parte A: X desde U vía F^{−1}
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Parte B: De Exponencial(λ) a Uniforme(0,1)

Idea: Generar X1, . . . , Xn
iid∼ Exp(λ) y transformar Ui = F (Xi) = 1 − e−λXi . Se espera U ∼ Unif(0, 1).

# Muestras exponenciales directas
X <- rexp(n, rate = lambda)

# Muestras visualización
hist(X, breaks = 80, probability = TRUE,

main = "Parte B (previa): X ~ Exp(lambda) antes de transformar",
xlab = "x")

curve(lambda * exp(-lambda * x), from = 0, to = quantile(X, 0.99),
add = TRUE, lwd = 2)
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Parte B (previa): X ~ Exp(lambda) antes de transformar
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c(mean = mean(X), var = var(X),
expected_mean = 1/lambda, expected_var = 1/(lambdaˆ2))

## mean var expected_mean expected_var
## 0.20058818 0.04011564 0.20000000 0.04000000

# Transformación directa: U = F(X)
U_from_X <- 1 - exp(-lambda * X)

# Comprobamos
# 1) Histograma con densidad teórica
hist(U_from_X, breaks = 80, probability = TRUE, main = "Parte B: U = F(X) desde X~Exp(lambda)",

xlab = "u", xlim = c(0,1))
abline(h = 1, lwd = 2) # densidad de Unif(0,1)
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Parte B: U = F(X) desde X~Exp(lambda)
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Anexo: fórmulas clave
• Exponencial(λ): f(x) = λe−λx, F (x) = 1 − e−λx, x ≥ 0.
• Inversa: F −1(u) = − log(1 − u)/λ, u ∈ (0, 1).
• Transformación directa: U = F (X) ⇒ U ∼ Unif(0, 1) si X ∼ F .

5



lab11Computo — Distribución de U = eˆ{-(X+Y)}

Carla Reyes

2025-11-02

Objetivo
En este laboratorio estudiamos la variable

U = e−(X+Y ),

donde (X, Y ) tiene densidad conjunta

fX,Y (x, y) = e−(x+y)1(0,∞)(x)1(0,∞)(y).

Esto corresponde a dos variables independientes X ∼ Exp(1) y Y ∼ Exp(1). Vamos a:

1. Simular muchas realizaciones de U .
2. Graficar el histograma empírico de U .
3. Dibujar encima la densidad teórica de U .
4. Comparar la esperanza empírica con el valor teórico.

Paso 1: generar muestras de X, Y y luego U

Simulamos N pares (X, Y ) con distribuciones exponenciales de tasa 1, luego calculamos U = exp(−(X + Y )).
N <- 10ˆ5 # tamaño de la simulación

# X y Y ~ Exp(1)
X <- rexp(N, rate = 1)
Y <- rexp(N, rate = 1)

# Definimos U = exp(-(X+Y))
U <- exp(-(X + Y))

summary(U)

## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 6.200e-07 6.787e-02 1.874e-01 2.510e-01 3.827e-01 9.962e-01

range(U) # debería estar dentro de (0,1)

## [1] 6.158473e-07 9.962246e-01

Paso 2: histograma empírico de U

Graficamos el histograma de U normalizado como densidad (probability=TRUE) y encima la densidad teórica
fU (u) = − log(u) en (0,1).

1



hist(U,
probability = TRUE,
breaks = 60,
main = "Distribución de U = exp(-(X+Y))",
xlab = "u")

curve(-log(x),
from = 0.0001, # evitar log(0)
to = 0.9999,
add = TRUE,
lwd = 2)

Distribución de U = exp(−(X+Y))
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Paso 3: Esperanza empírica vs teórica

Calculamos el promedio muestral de U y lo comparamos con 1/4.
EU_muestral <- mean(U)
EU_teorico <- 1/4

EU_muestral

## [1] 0.2509841

EU_teorico

## [1] 0.25

2



lab12Computo — Simulación de Rayleigh

Carla Reyes

2025-11-10

Objetivo
Partiendo de dos normales independientes con media cero y varianza diferentes de cero, definimos la distancia
al origen \[ R = \, \sqrt{X_1ˆ2 + X_2ˆ2}. \] Se sabe que \(R\) sigue una distribución de Rayleigh con
parámetro \(\sigma>0\)

Parámetros y utilidades

n <- 200000 # número de simulaciones
sigma <- 2.0 # parámetro de escala de las normales y de Rayleigh

# densidad de Rayleigh
dRayleigh <- function(r, sigma) (r/sigmaˆ2) * exp(-(rˆ2)/(2*sigmaˆ2))

ER_theo <- sigma * sqrt(pi/2)
Var_theo <- (2 - pi/2) * sigmaˆ2
c(ER_theo = ER_theo, Var_theo = Var_theo)

## ER_theo Var_theo
## 2.506628 1.716815

Simulación desde normales y transformación radial

Z1 <- rnorm(n)
Z2 <- rnorm(n)
X1 <- sigma * Z1
X2 <- sigma * Z2
R <- sqrt(X1ˆ2 + X2ˆ2)

ER_hat <- mean(R)
VR_hat <- var(R)
c(ER_hat = ER_hat, VR_hat = VR_hat)

## ER_hat VR_hat
## 2.507424 1.722702

Histograma vs. densidad teórica

library(ggplot2)
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df <- data.frame(R = R)
g <- ggplot(df, aes(x = R)) +

geom_histogram(aes(y = ..density..), bins = 120, boundary = 0, closed = "left") +
stat_function(fun = function(x) dRayleigh(x, sigma), linewidth = 1.1) +
labs(title = "R = distancia al origen desde normales(0, sˆ2)",

subtitle = paste0("n = ", format(n, big.mark=","), ", s = ", sigma),
x = "r", y = "densidad") +

theme_minimal()
g
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n = 2e+05,  s = 2

R = distancia al origen desde normales(0, s^2)

Verificación de momentos

data.frame(
cantidad = c("E[R]", "Var(R)"),
teorico = c(ER_theo, Var_theo),
empirico = c(ER_hat, VR_hat)

)

## cantidad teorico empirico
## 1 E[R] 2.506628 2.507424
## 2 Var(R) 1.716815 1.722702
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Lab 13 Cómputo - Estadísticos de 
orden 

Carla Reyes 

19 de noviembre de 2025 

Ejercicio 1: comparación de dos estimadores de θ 

Consideramos una muestra aleatoria 𝑋1, … , 𝑋𝑛 de una distribución 
𝑋𝑖 ∼ Unif(0, 𝜃). Estudiaremos por simulación los siguientes estimadores: 

𝜃̃ = 2𝑋‾,  𝜃 =
𝑛 + 1

𝑛
𝑋(𝑛). 

Parámetros de simulación 
set.seed(12345) 
theta_verdadera <- 10 
n_vec <- c(5, 10, 30) 
B <- 10000 
 
theta_verdadera 

## [1] 10 

n_vec 

## [1]  5 10 30 

B 

## [1] 10000 

Función de simulación 
sim_estimadores <- function(n, theta, B = 10000) { 
  muestras <- matrix(runif(B * n, 0, theta), nrow = B) 
 
  medias <- rowMeans(muestras) 
  maximos <- apply(muestras, 1, max) 
 
  data.frame( 
    n = n, 
    theta_tilde = 2 * medias, 
    theta_hat   = (n + 1)/n * maximos 
  ) 
} 



Correr simulaciones 
resultados_lista <- lapply(n_vec, sim_estimadores, 
                           theta = theta_verdadera, B = B) 
 
resultados <- do.call(rbind, resultados_lista) 
 
head(resultados) 

##   n theta_tilde theta_hat 
## 1 5   10.446557  8.650847 
## 2 5   16.629186 11.968946 
## 3 5   14.389521 10.435692 
## 4 5   14.444601 11.774803 
## 5 5    7.545054  7.477126 
## 6 5    8.237339 11.357798 

Resumen 
library(dplyr) 

##  
## Attaching package: 'dplyr' 

## The following objects are masked from 'package:stats': 
##  
##     filter, lag 

## The following objects are masked from 'package:base': 
##  
##     intersect, setdiff, setequal, union 

theta0 <- theta_verdadera 
 
resumen <- resultados |> 
  tidyr::pivot_longer( 
    cols = c(theta_tilde, theta_hat), 
    names_to = "estimador", 
    values_to = "valor" 
  ) |> 
  group_by(n, estimador) |> 
  summarise( 
    media_sim = mean(valor), 
    sesgo_sim = mean(valor) - theta0, 
    var_sim   = var(valor), 
    mse_sim   = mean((valor - theta0)^2), 
    .groups = "drop" 
  ) 
 
resumen 



## # A tibble: 6 × 6 
##       n estimador   media_sim sesgo_sim var_sim mse_sim 
##   <dbl> <chr>           <dbl>     <dbl>   <dbl>   <dbl> 
## 1     5 theta_hat        9.99  -0.0136    2.89    2.89  
## 2     5 theta_tilde      9.98  -0.0238    6.63    6.63  
## 3    10 theta_hat        9.98  -0.0154    0.858   0.858 
## 4    10 theta_tilde     10.0    0.0123    3.37    3.37  
## 5    30 theta_hat       10.0    0.00331   0.103   0.103 
## 6    30 theta_tilde     10.0    0.0105    1.09    1.09 

Gráficas de las distribuciones simuladas 
library(ggplot2) 
 
datos_largos <- resultados |> 
  tidyr::pivot_longer( 
    cols = c(theta_tilde, theta_hat), 
    names_to = "estimador", 
    values_to = "valor" 
  ) 
 
datos_largos$estimador <- factor( 
  datos_largos$estimador, 
  levels = c("theta_tilde", "theta_hat"), 
  labels = c("tilde_theta = 2*Xbar", "hat_theta = ((n+1)/n)*X_(n)") 
) 
 
ggplot(datos_largos, aes(x = valor)) + 
  geom_histogram(aes(y = after_stat(density)), bins = 40) + 
  geom_density(linewidth = 1) + 
  geom_vline(xintercept = theta_verdadera, linetype = "dashed") + 
  facet_grid(estimador ~ n, scales = "free") + 
  labs( 
    title = "Distribuciones simuladas de los estimadores de θ", 
    x = expression(theta_hat), 
    y = "Densidad" 
  ) 



 



Lab14Computo - Simulación del TCL y la LGN

Carla Reyes

Teorema Central del Límite (TCL)
En este apartado simularemos el TCL con variables aleatorias Uniforme(0,1).
set.seed(123)

B <- 10000 # número de simulaciones
n_vec <- c(5, 10, 30) # tamaños de muestra para ilustrar el TCL

par(mfrow=c(1,3))

for (n in n_vec) {
medias <- replicate(B, mean(runif(n, 0, 1)))

hist(medias, freq = FALSE, main = paste("n =", n),
xlab = "Media muestral", breaks = 30)

curve(dnorm(x, mean = 0.5, sd = 1/sqrt(12*n)),
add = TRUE, lwd = 2)

}
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Observamos que conforme n aumenta, la distribución de la media muestral se acerca más a una normal.

Ley de los Grandes Números (LGN)
Simulamos cómo la media muestral converge al valor esperado de una Uniforme(0,1), que es 0.5.
set.seed(123)

N <- 5000
x <- runif(N)
media_acumulada <- cumsum(x) / (1:N)

plot(media_acumulada, type="l", col="blue",
xlab="n", ylab="Media acumulada",
main="Ley de los Grandes Números")

abline(h = 0.5, col="red", lwd=2)
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La media acumulada converge hacia 0.5, lo que desmuestra la LGN.
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