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Lab0l — Urna 0/1: X = max, Y = min

2025-08-24

Ejercicio: Maximo y minimo de dos extracciones Bernoulli

Planteamiento

Sean A, B FL- Bernoulli(p) con 0 < p < 1. Definimos

X = max{A, B}, Y = min{A, B}.

Objetivos

1. Derivar (o recordar) la f.m.p. conjunta fx y(z,y) y las marginales fx, fy.

Simulacién en R

Ajusta los parametros si lo deseas y vuelve a ejecutar la celda.

N <= 100000 # tamafio de simulacion
p <- 0.5 # parametro Bernoullz
seed <- 123 # semilla
set.seed(seed)

a) F.M.P. conjunta y marginales (empiricas vs tedricas)

Simulacién de A,B y construccién de X,Y
<- rbinom(N, 1, p)

<- rbinom(N, 1, p)

<- pmax(a, b)

<- pmin(a, b)

< O w

# Rejtllas y fmp empirica
xs <- 0:1; ys <= 0:1
pnf_emp <- prop.table(table(factor(X, levels = xs), factor(Y, levels = ys)))

# FMP tedérica (p genérico)
pmf_th <- matrix(c((1-p)~2, O,
2xp*(1-p), p~2),
nrow = 2, byrow = TRUE,
dimnames = 1list(X = as.character(xs), Y = as.character(ys)))

# Marginales

margX_emp <- rowSums (pmf_emp)

margY_emp <- colSums (pmf_emp)

margX_th <- ¢c(C0 = (1-p)°2, 1" =1 - (1-p)"2)
margY_th <- c(C0 =1-p"2, "1° =p"2)



cat ("FMP empirica:\n"); print(round(pmf_emp, 4))

## FMP empirica:

##

## 0 1
## 0 0.2499 0.0000
## 1 0.5027 0.2474

cat ("FMP tedrica:\n"); print(round(pmf_th, 4))

## FMP tebrica:

## Y

## X 0 1
## 0 0.25 0.00
## 1 0.50 0.25

cat("Marginales empiricas X, Y:\n"); print(round(margX_emp,4)); print(round(margY_emp,4))

## Marginales empiricas X, Y:

## 0 1
## 0.2499 0.7501

## 0 1
## 0.7526 0.2474
cat("Marginales tedéricas X, Y:\n"); print(round(margX_th,4)); print(round(marg¥_th,4))

## Marginales tedricas X, Y:

## 0 1
## 0.25 0.75

## 0 1
## 0.75 0.25

b) Visualizacién rapida

# Vectorizamos en el orden deseado: (X=0,Y=0), (X=0,Y=1), (X=1,Y=0), (X=1,Y=1)

labels <~ c("X=0,Y=0","X=0,Y=1" "X=1,¥=0","X=1,Y=1")

pnf_emp_vec <- c(pmf_emp["0","0"], pmf_emp["0","1"], pmf_emp["1","0"], pmf_emp["1","1"])
pmf_th_vec <- c(pmf_th["0","0"], pmf_th["0","1"], pmf_th["1","0"], pmf_th["1","1"])

bars <- rbind(Empirica = pmf_emp_vec, Teorica = pmf_th_vec)
bp <- barplot(beside = TRUE, height = bars, names.arg = labels,

ylab = "Probabilidad", main = "f.m.p. conjunta: empirica vs tedrica")
legend("topright", legend = rownames(bars), fill = gray.colors(2), bty = "n")
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lab02Computo — Simulacién (Problema 10)

Carla Reyes

30 de agosto de 2025

Contents

Objetivo 1

Caédigo 1
Funciones auxiliares . . . . . . . . . L e e 1
Ejecutar la simulacion . . . . . . ... Lo 2

Objetivo

Estimaremos por simulacién la probabilidad de que todos los valores propios de la matriz

A:

o o R
Q0O
Q0o O

sean reales, cuando las entradas a, b, ¢ se generan independientemente con distribucién Uniforme(-1,1).

Codigo
Funciones auxiliares

# Construye la matriz Delta para un triplete (a,b,c)
make_delta <- function(a, b, c) {
matrix(c(a, c, O,
b, a, c,
0, b, a), nrow = 3, byrow = TRUE)
}

# Revisa st todos los etgenvalores son reales (tolerancia numérica)
all_eigs_real <- function(M, tol = 1e-10) {

vals <- eigen(M, only.values = TRUE)$values

max (abs(Im(vals))) < tol
}

# Simulacidon directa:

# 1) Genera (a,b,c) ~ i.%.d. Unif(-1,1)

# 2) Construye Delta

# 3) Calcula eigenvalores y verifica si todos son reales
# 4) Repite N veces y devuelve la proporcién (p-hat)
simulate_prob <- function(N = 10000) {



a <- runif(N, -1, 1)
b <- runif(N, -1, 1)
¢ <- runif (N, -1, 1)

ok <- logical(N)

for (i in seq_len(N)) {
M <- make_delta(alil, bl[i], c[il)
ok[i] <- all_eigs_real(M)

}

mean(ok) # devuelve solo p-hat

Ejecutar la simulacion

Ajusta N para mayor precisién (mds grande = maés lento).

N <- 10000
p_hat <- simulate_prob(N)
p_hat

## [1] 0.499



lab03 — Problema 7: Simulacion de P(X =1 |Y > 0)

Carla Reyes

7 de septiembre de 2025

Contents
Enunciado 1
Cadigo

Funciones . . . . . .
Correr la simulacidn . . . . . . . . . e

— = =

Enunciado

Sea X € {—1,1} con P(X =1) =1/3y Z ~ N(0,1) independiente de X. Defina Y = Z + X. Estimar por
simulacién P(X =1|Y > 0).

Cddigo
Funciones

simulate_prob7 <- function(N = 1e6) {
# X: +1 con prob 1/3, -1 con prob 2/3
X <- sample(c(l, -1), size = N, replace = TRUE, prob = c(1/3, 2/3))
# 7 ~ N(,1)
Z <- rnorm(N)
Y<-2Z +X
idx <- Y >0
n_pos <- sum(idx)
if (n_pos == 0) stop("No hubo Y>0; incrementa N.")
phat <- mean(X[idx] == 1)
list(N = N, n_pos = n_pos, p_hat = phat)

Correr la simulacion

Puedes ajustar N si quieres mayor precisién (mds grande = maés lento).

N <- 1e6

res <- simulate_prob7(N)
res

## $N

## [1] 1e+06

##

## $n_pos



## [1] 387298
##

## $p_hat

## [1] 0.7262366

Reporte claro
cat(sprintf("n total: %d | n(Y>0): %d\n", res$N, res$n_pos))
## n total: 1000000 | n(Y>0): 387298

cat(sprintf ("Estimacién: p_hat = %.6f\n", res$p_hat))
## Estimacidén: p_hat = 0.726237



Lab 05 Cémputo — Simulacion (Problema 5)

Carla Reyes

Problema 5 del laboratorio 5

Una urna contiene tres bolas numeradas 1, 2 y 3. Se extraen dos bolas sin reemplazo.
Sea X el nimero de la primera bola extraida y Y el nimero de la segunda.
Se pide calcular Cov(X,Y) y pxy-

Simulacién
set.seed(123456)

B <- 2e5 # ndmero de repeticiones

# Simulamos extracciones sin reemplazo de {1,2,3}
X <- integer(B)

Y <- integer(B)

for (b in seq_len(B)) {
s <- sample(1:3, size = 2, replace = FALSE)
X[b] <- s[1]
Y[b] <- s[2]

}

# Estimadores empiricos
EX <- mean(X);

EY <- mean(Y)

VarX <- var(X);

VarY <- var(Y)

CovXY <- cov(X, Y)
RhoXY <- cor(X, Y)

c(EX=EX, EY=EY, VarX=VarX, VarY=VarY, CovXY=CovXY, RhoXY=RhoXY)

## EX EY VarX VarY CovXY RhoXY
## 2.0016250 1.9987950 0.6658657 0.6678169 -0.3336797 -0.5003890

Conclusiéon

Tanto la derivacién analitica como la simulaciéon confirman que:
- Cov(X,Y)=—1

_ 1
- PXYy = —3



La correlacion negativa surge de que no hay reemplazo: si la primera bola es alta, se reduce la
probabilidad de que la segunda también lo sea.



lab06Computo — Simulacién y verificacién (Problema 4)

Carla Reyes

2025-09-28
Contents
1 Enunciado (Problema 4) 1
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2.1 Tabla de probabilidades . . . . . . . . . . L 1
2.2 Simulacidn . . . . . .. e e e e e 2
3 Verificacién analitica: medias, covarianza y dependencia 2
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4 Comentarios finales 4

1 Enunciado (Problema 4)

Sean Y7 y Y, variables aleatorias discretas con f.d.p. conjunta dada por la tabla:

[ Yi=-1 1=0 Y =1
Y,=-1] 1/16  3/16 1/16
Y,=0 | 3/16 0 3/16
Y=1 | 1/16  3/16  1/16

Se pide mostrar que Yi }/2 son dependientes pero tienen covarianza 0 realizar una simulacién
)
que ilustre el resultado.

2 Construccion de la distribuciéon y simulacién

library(dplyr)

2.1 Tabla de probabilidades

# Valores posibles
valores <- expand.grid(
Y1 = c(-1, 0, 1),
Y2 = c(-1, 0, 1)
)

# Probabilidades segun la tabla (orden: por filas de Y2: -1,0,1; y por columnas de Y1: -1,0,1)



valores$prob <- c(1,3,1, 3,0,3, 1,3,1) / 16

valores

## Y1 Y2  prob

## 1 -1 -1 0.0625
## 2 0 -1 0.1875
## 3 1 -1 0.0625
## 4 -1 0 0.1875
## 5 0 0 0.0000
## 6 1 0 0.1875
## 7 -1 1 0.0625
## 8 0 1 0.1875
## 9 1 1 0.0625

Comprobamos que suma a 1:

sum(valores$prob)

## [1] 1

2.2 Simulaciéon

set.seed(20250928) # fija semilla para replicabilidad
n <- 20000 # tamafio de muestra simulada

# Muestreo de pares (Y1, Y2) con sus probabilidades

sim_idx <- sample.int(n = nrow(valores), size = n, replace = TRUE, prob = valores$prob)
sim <- valores([sim_idx, c("Y1","Y2")]

head(sim)

## Y1 Y2
## 2 0 -1
## 4 -1 0
## 2.1 0 -1
## 7 -1 1
## 3 1 -1
## 4.1 -1 O

3 Verificacion analitica: medias, covarianza y dependencia

# Marginales exactos
marg_Y1 <- sim %>%
count (Y1, name = "n") %>%
mutate(p = n / sum(n))

marg_Y2 <- sim %>Y%
count (Y2, name = "n") %>%

mutate(p = n / sum(n))

marg_Y1; marg_Y2



## Y1 n P
## 1 -1 6222 0.31110
## 2 0 7527 0.37635

## 3 1 6251 0.31255
## Y2 n P
## 6257 0.31285

1-1
## 2 0 7439 0.37195
## 3 1 6304 0.31520

# Medias y covarianza empiricas (se aproximan a las verdaderas)
media_Y1_emp <- mean(sim$Y1)

media_Y2_emp <- mean(sim$Y2)

cov_emp <- cov(sim$Y¥1l, sim$Y2)

list(media_Y1_emp = media_Y1_emp,
media_Y2_emp = media_Y2_emp,
covarianza_empirica = cov_emp)

## $media_Y1_emp

## [1] 0.00145

##

## $media_Y2_emp

## [1] 0.00235

#i#

## $covarianza_empirica
## [1] 0.002296707

Resultado teédrico esperado: E[Y;] = 0, E[Y2] = 0 y Cov(Y1,Y2) = 0. Abajo confirmamos de forma
exacta con operaciones simbdlicas sobre la distribucion.

# Calculo exacto con la tabla (sin depender de la simulacion)
tab <- valores

EYl <- sum(tab$¥Yl * tab$prob)
EY2 <- sum(tab$Y2 * tab$prob)
EY1Y2 <- sum(tab$¥l * tab$¥2 * tab$prob)
CovY1Y2 <- EY1Y2 - EY1 * EY2

data.frame(EY1, EY2, EY1Y2, CovY1Y2)

## EY1 EY2 EY1Y2 CovY1Y2
## 1 0 0 0 0

3.1 Demostracién de dependencia (no independencia)

Para independencia deberfa cumplirse P(Y; = y1,Y2 = y2) = P(Y1 = y1) P(Y2 = y2) para todos los pares
(y1,y2). Basta encontrar un contraejemplo:

# Prob conjunto de (Y1=0, Y2=0):
p_joint_00 <- tab %>% filter(Y1==0, Y2==0) %>’ pull(prob)

# Prob marginales
p_Y1 0 <- tab %>} filter(Y1==0) %>, summarise(p = sum(prob)) %>} pull(p)
p_Y2_0 <- tab %>} filter(Y2==0) %>, summarise(p = sum(prob)) %>} pull(p)

data.frame(



P_Yl_eq 0 = p_Y1_0,
P_Y2_eq 0 = p_Y2_0,
P_joint_00 = p_joint_00,

Prod_marginales = p_Y1_0 * p_Y2_0

)
## P_Y1l_eq_O0 P_Y2_eq_O P_joint_OO0 Prod_marginales
#it 1 0.375 0.375 0 0.140625

Observa que P(Y; = 0,Y2 = 0) = 0 mientras que P(Y; = 0) P(Y3 = 0) > 0. Luego no son independientes
(aunque la covarianza sea 0).

4 Comentarios finales
e La covarianza nula no implica independencia.

« Este ejemplo ilustra como dos variables pueden ser dependientes (fallan las igualdades de independencia)

pero tener correlaciéon cero.



lab07Computo — Simulacién del Problema 7

Carla Reyes

05 Oct 2025

Enunciado

En un centro de atencién telefonica, cada agente atiende llamadas de forma continua hasta que decide tomar
un descanso.

- La duracién de cada llamada es i.i.d. Exponencial con pardmetro A = 0.2 y es independiente de las
demas.

- El niimero total de llamadas N que atiende el agente es por lo menos 5 y se distribuye Geométrica
con parametro p = 0.3, independiente de las duraciones.

- Interpretamos esto como N = 5+ G, donde G ~ Geom(p) con soporte {0,1,2,...} (ntumero de fracasos
antes del primer éxito).

Se pide calcular el valor esperado y la varianza de la duracién total T = vazl X;; y verificar por
simulacion.

Derivacion teodrica

Como N =5+ G,

Usando la férmula de suma aleatoria con independencia (T = Zil X,):

E[T] = E[N]E[X], Var(T) = E[N] Var(X) + Var(N) (E[X])2.
Sustituyendo E[X] = 1/\ y Var(X) = 1/A%:

E[N E[N] + Var(N
E[T] = % Var(T)) = %
Conp=03yA=0.2:
p < 0.3
lam <- 0.2
EN <-5+ (1 -p/p
VarN <- (1 - p)/p°2
ET_theory <- EN / lam
VarT_theory <- (EN + VarN) / lam”2
list(E_N = EN, Var_N = VarN, E_T = ET_theory, Var_T = VarT_theory,
sd_T = sqrt(VarT_theory))



## $E_N

## [1] 7.333333
##

## $Var N

## [1] 7.777778
##

## $E_T

## [1] 36.66667
##

## $Var T

## [1] 377.7778
##

## $sd_T

## [1] 19.43651

Resultados tedricos esperados: - E[N] = 7.3 - Var(N) = 7.7 - E[T] = 36.6 - Var(T) = 377.7

(Unidades en minutos si la tasa A estd dada en llamadas por minuto.)

Verificacion por simulacién (Monte Carlo)

Simulamos B réplicas. En cada réplica: 1. Generamos G ~ Geom(p) y calculamos N =5+ G. 2. Sumamos
N duraciones exponenciales i.i.d. X; ~ Exp(}\). 3. Guardamos T = Zfil X;.

set.seed(7)
B <- 1e5

# Muestras de N = 5 + G, con G ~ Geom(p) (soporte 0,1,2,...)
N <- 5 + rgeom(B, prob = p)

# Funcion que simula una suma de exponentiales con N_% términos
sim_T <- function(n, rate) {

if (n <= 0) return(0)

sum(rexp(n, rate = rate))

}

# Vector con T simulados
T_vals <- sapply(N, sim_T, rate = lam)

c(
mean_ T = mean(T_vals),
var T = var(T_vals),
mean_ N = mean(N),
var N = var(N)
)
## mean_T var_T mean_N var_N

## 36.727848 381.684951  7.327820  7.755432

Comparacién teoria vs simulaciéon

data.frame(
Magnitud = c("E[N]", "Var[N]", "E[T]", "Var[T]"),
Teoria = c(EN, VarN, ET_theory, VarT_theory),



Simulacién = c(mean(N), var(N), mean(T_vals), var(T_vals))

)

##  Magnitud Teoria Simulacidn
## 1 E[N] 7.333333 7.327820
## 2 Var[N]  7.777778  7.755432
## 3 E[T] 36.666667 36.727848

## 4  Var[T] 377.777778 381.684951

Visualizacion

Distribucién aproximada de T' (histograma) y una marca en la media tedrica:

hist(T_vals, breaks = 60, main = "Distribucidén simulada de T",
xlab = "T (minutos)", probability = TRUE)
abline(v = ET_theory, lwd = 2, lty = 2)

Distribucion simuladade T
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labComputo08

Carla Reyes

2025-10-12

Sesion 08 — Simulacion del Problema 1

Considere un dado honesto lanzado 7 veces de manera independiente. Calcule la probabilidad de que cada
una de las caras 2,3,4,5,6 aparezca exactamente una vez, condicionando a que la cara 1 salié
exactamente dos veces.

Simulacién (200000 intentos)

Hacemos 200000 intentos. En cada intento simulamos 7 lanzamientos. Si en los 7 hay exactamente dos
caras 1, revisamos si las otras 5 caras son 2,3,4,5,6 cada una una sola vez. La estimacion es:

A

_ #{intentos con 2 unos y con {2,3,4,5,6}}
B #{intentos con exactamente 2 unos}

B <- 200000

# Simulamos B intentos de 7 lanzamientos cada uno
lanz <- matrix(sample(1:6, size = 7*B, replace = TRUE), ncol = 7)

# Filtramos los intentos con exactamente dos "1"
cond_idx <- rowSums(lanz == 1) ==
n_cond <- sum(cond_idx)

# Entre los condicionados, verificamos st las otras 5 caras son 1{2,3,4,5,6}
es_exacto_2a6 <- function(fila) {

v <- fila[fila != 1] # quita los "1", quedan 5 walores

# ;Son exzactamente 2,3,4,5,6 cada uno una sola vez?

all(sort(v) == 2:6)
}

ok <- apply(lanz([cond_idx, , drop = FALSE], 1, es_exacto_2a6)
n_ok <- sum(ok)

p_hat <- if (n_cond > 0) n_ok / n_cond else NA_real_

data.frame(
intentos_totales = B,
intentos_condicionados = n_cond,
exitos = n_ok,
p_estimada = p_hat

)

## intentos_totales intentos_condicionados exitos p_estimada



##

1

2e+05

47128

1809 0.03838482



lab09Computo

Carla Reyes

2025-10-19

Problema 1 del Laboratorio 9

Sea \(Y_1 \sim \mathrm{Bin}(n_1, p_1=0.2)\) y \(Y_2 \sim \mathrm{Bin}(n_2, p_ 2=0.8)\), indepen-
dientes. Hay que estudiar la distribucién de \[ Z \,=\, Y_1+n_2-Y_2.\]

Resultado tedérico: Como \(n_2 - Y_ 2 \sim \mathrm{Bin}(n 2, 0.2)\) y es independiente de
\(Y_1\sim\mathrm{Bin}(n_1,0.2)\), se tiene que \(Z = (n_2-Y_2) + Y_1 \sim \mathrm{Bin}(n_1 +
n_2,0.2)\).

Parametros

set.seed(1704)

nl <- 5
n2 <- 8
pl <- 0.2
p2 <- 0.8

reps <- 1leb # numero de muestras

Simulacién

# Genera muestras
Y1 <- rbinom(reps, size = nl, prob = p1)
Y2 <- rbinom(reps, size = n2, prob = p2)

Z <- Y1 + n2 - Y2

Resumen empirico vs tedrico

# Soporte tedrico de Z
k <- 0:(nl + n2)

# Probabilidades tedéricas st Z ~ Bin(ni+n2, 0.2)
theo_probs <- dbinom(k, size = nl + n2, prob = 0.2)

# Probabilidades empiricas por simulacién
obs_tab <- table(factor(Z, levels = k))
obs_probs <- as.numeric(obs_tab) / sum(obs_tab)

# Medias y varianzas
emp_mean <- mean(Z)
emp_var <- var(Z)



th_mean <- (nl1 + n2) * 0.2
th_ var <- (nl + n2) * 0.2 * 0.8

1i

)

##
##
##
##
##
##
##
##
##
##
##

st(

media_empirica = emp_mean,
var_empirica = emp_var,
media_teorica = th_mean,
var_teorica = th_var

$media_empirica
[1] 2.60503

$var_empirica
[1] 2.08307

$media_teorica
[1] 2.6

$var_teorica
[1] 2.08

Comparacién visual (barras)

1i

df

gg

brary(ggplot2)

_plot <- data.frame(

k = k,

Empirica = obs_probs,
Teorica = theo_probs
plot(df_plot, aes(x = k)) +

geom_col(aes(y = Empirica), width = 0.7, alpha = 0.6) +
geom_point (aes(y = Teorica)) +

labs(
title = "Distribucidén de Z = Y1 + n2 - Y2",
subtitle = pasteO("nl=", nl, ", n2=", n2, ", pl=0.2, p2=0.8; réplicas=", reps),
x = "k",
y = "Probabilidad"
) +

theme_minimal ()



Distribucion de Z=Y1+n2 -Y2
nl=5, n2=8, p1=0.2, p2=0.8; réplicas=1e+05

®
0.2
| I
0.0 l . mem - — ° ° ° ° °

0 5 10

Probabilidad

Tabla compacta

head(data.frame (
k =k,
Prob_Empirica = round(obs_probs, 5),
Prob_Teorica round (theo_probs, 5)

), 15)

## k Prob_Empirica Prob_Teorica
## 1 0 0.05425 0.05498
## 2 1 0.17909 0.17867
# 3 2 0.26501 0.26801
#t 4 3 0.24962 0.24567
##t 5 4 0.15264 0.15355
## 6 b 0.06888 0.06910
## 7 6 0.02300 0.02303
# 8 7 0.00614 0.00576
## 9 8 0.00122 0.00108
## 10 9 0.00014 0.00015
## 11 10 0.00001 0.00001
## 12 11 0.00000 0.00000
## 13 12 0.00000 0.00000
## 14 13 0.00000 0.00000



lab10Computo— Transformacion Integral de Probabilidad

Carla Reyes

2025-10-29

Objetivo

Simular y verificar empiricamente el Teorema de la Transformacién Integral de Probabilidad usando
una Exponencial con pardmetro A > 0: 1) Si U ~ Unif(0,1) y definimos X = F~1(U), entonces X ~ F. 2)
Si X ~ F'y definimos U = F(X), entonces U ~ Unif(0, 1).

Trabajaremos con la distribucién Exponencial(\) cuya funcién de distribucién acumulada (FDA) es:
Flx)=1—e?", x>0, A>0.

La inversa generalizada de F es:

Parametros de simulacion

n <- 100000 # tamafio de muestra
lambda <- 5 # parametro de la Exzponencial

Parte A: De Uniforme(0,1) a Exponencial()\)

Idea: Generar Uy,...,U, i Unif(0,1) y transformar X; = F~1(U;) = —log(1 — U;)/A. Se espera X ~
Exp()\).

# Muestras uniformes

U <- runif(n)

# Muestras visualizacion

hist(U, breaks = 80, probability = TRUE,
main = "Parte A (previa): U ~ Unif(0,1) antes de transformar",
xlab = "u", xlim = c(0, 1))

abline(h = 1, lwd = 2) # densidad de Unif(0,1)



Parte A (previa): U ~ Unif(0,1) antes de transformar

1.0

Density

00 02 04 06 0.8

0.0 0.2 0.4 0.6 0.8 1.0

c(mean = mean(U), var = var(U),
expected_mean = 0.5, expected_var = 1/12)

## mean var expected_mean expected_var
## 0.50052451 0.08313908 0.50000000 0.08333333

# Transformacion inversa: Ezp(lambda)
X_from_U <- -log(l - U) / lambda

# Comprobamos
# 1) Histograma con densidad tedérica
hist(X_from_U, breaks = 80, probability = TRUE, main = "Parte A: X desde U via F~{-1}",
xlab = "x")
curve(lambda * exp(-lambda * x), from = 0, to = quantile(X_from_U, 0.99),
add = TRUE, 1lwd = 2)



Parte A: X desde U via FM-1}
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Parte B: De Exponencial(\) a Uniforme(0,1)

Idea: Generar Xi,..., X, < Exp(\) y transformar U; = F(X;) = 1 — e . Se espera U ~ Unif(0, 1).

# Muestras exponenciales directas
X <- rexp(n, rate = lambda)

# Muestras visualizacion

hist(X, breaks = 80, probability TRUE,
main = "Parte B (previa): X ~ Exp(lambda) antes de transformar",
xlab = "x")

curve (lambda * exp(-lambda * x), from = 0, to = quantile(X, 0.99),
add = TRUE, lwd = 2)



Parte B (previa): X ~ Exp(lambda) antes de transformar
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X

c(mean = mean(X), var = var(X),
expected_mean = 1/lambda, expected_var = 1/(lambda”2))

## mean var expected_mean expected_var
## 0.20058818 0.04011564 0.20000000 0.04000000

# Transformacion directa: U = F(X)
U_from_X <- 1 - exp(-lambda * X)

# Comprobamos

# 1) Histograma con densidad tedrica

hist(U_from_X, breaks = 80, probability = TRUE, main = "Parte B: U = F(X) desde X~Exp(lambda)",
xlab = "u", xlim = c(0,1))

abline(h = 1, lwd = 2) # densidad de Unif(0,1)



Parte B: U = F(X) desde X~Exp(lambda)
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Anexo: féormulas clave

 Exponencial(\): f(z) = Ae ™% F(z) =1—e 2 2 > 0.
o Inversa: F~1(u) = —log(1 —u)/\, u € (0,1).
o Transformacion directa: U = F(X) = U ~ Unif(0,1) si X ~ F.

1.0



lab11Computo — Distribucion de U = e {-(X+Y)}

Carla Reyes

2025-11-02

Objetivo

En este laboratorio estudiamos la variable
U=e XY

donde (X,Y) tiene densidad conjunta

fxy(z,y) =e =T 1(0,00) (%) 1 (0,00 (¥)-

Esto corresponde a dos variables independientes X ~ Exp(1) y Y ~ Exp(1). Vamos a:

1. Simular muchas realizaciones de U.

2. Graficar el histograma empirico de U.

3. Dibujar encima la densidad teérica de U.

4. Comparar la esperanza empirica con el valor teérico.

Paso 1: generar muestras de X, Y y luego U

Simulamos N pares (X,Y’) con distribuciones exponenciales de tasa 1, luego calculamos U = exp(—(X +Y)).

N <- 10°5 # tamanio de la stmulacion

#Xy Y ~ Ezp(1)
X <- rexp(N, rate = 1)
Y <- rexp(N, rate 1)

# Definimos U = exp (- (X+Y))
U <- exp(-(X + Y))

summary (U)

## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 6.200e-07 6.787e-02 1.874e-01 2.510e-01 3.827e-01 9.962e-01

range(U) # deberia estar dentro de (0,1)
## [1] 6.158473e-07 9.962246e-01

Paso 2: histograma empirico de U

Graficamos el histograma de U normalizado como densidad (probability=TRUE) y encima la densidad teérica
fu(u) = —log(u) en (0,1).



hist (U,
probability = TRUE,

breaks = 60,
main = "Distribucién de U = exp(-(X+Y))",
xlab = "u")

curve(-log(x),
from = 0.0001, # evitar log(0)
to 0.9999,
add = TRUE,
lwd 2)

Distribucion de U = exp(—(X+Y))

Density
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Paso 3: Esperanza empirica vs tedrica

Calculamos el promedio muestral de U y lo comparamos con 1/4.

EU_muestral <- mean(U)
EU_teorico <- 1/4

EU_muestral

## [1] 0.2509841

EU_teorico

## [1] 0.25



lab12Computo — Simulacién de Rayleigh

Carla Reyes

2025-11-10

Objetivo

Partiendo de dos normales independientes con media cero y varianza diferentes de cero, definimos la distancia
al origen \[ R =\, \sart{X_1"2 4+ X_2"2}. \] Se sabe que \(R)) sigue una distribucién de Rayleigh con
pardmetro \(\sigma>0\)

Parametros y utilidades

n <- 200000 # numero de simulactiones
sigma <- 2.0 # parametro de escala de las normales y de Rayleigh

# denstidad de Rayleigh
dRayleigh <- function(r, sigma) (r/sigma”2) * exp(-(r~2)/(2*sigma”2))

ER_theo <- sigma * sqrt(pi/2)
Var_theo <- (2 - pi/2) * sigma™2
c(ER_theo = ER_theo, Var_theo = Var_theo)

## ER_theo Var_theo
## 2.506628 1.716815

Simulacién desde normales y transformaciéon radial

Z1 <- rnorm(n)

Z2 <- rnorm(n)

X1 <- sigma * Z1

X2 <- sigma * Z2

R <- sqrt(X1°2 + X272)

ER_hat <- mean(R)
VR_hat <- var(R)
c(ER_hat = ER_hat, VR_hat = VR_hat)

## ER_hat VR_hat
## 2.507424 1.722702

Histograma vs. densidad tedrica

library(ggplot2)



df <- data.frame(R = R)
g <- ggplot(df, aes(x = R)) +

geom_histogram(aes(y = ..density..), bins = 120, boundary = 0, closed = "left") +
stat_function(fun = function(x) dRayleigh(x, sigma), linewidth = 1.1) +
labs(title = "R = distancia al origen desde normales(0, s"2)",

subtitle = pasteO("'n = ", format(n, big.mark=","), ",

x = "r", y = "densidad") +

theme_minimal ()

g
R = distancia al origen desde normales(0, s"2)
n=2e+05, s=2
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Verificacion de momentos

data.frame(
cantidad = c("E[R]", "Var(R)"),
teorico = c(ER_theo, Var_theo),
empirico = c(ER_hat, VR_hat)

)

##  cantidad teorico empirico
## 1 E[R] 2.506628 2.507424
## 2 Var(R) 1.716815 1.722702

s =

, sigma),

7.5

10.C



Lab 13 Computo - Estadisticos de
orden

Carla Reyes
19 de noviembre de 2025

Ejercicio 1: comparacion de dos estimadores de 6

Consideramos una muestra aleatoria X, ..., X;, de una distribucion
X; ~ Unif(0, 8). Estudiaremos por simulacion los siguientes estimadores:

~ _ . n+1
0= 2X, 0= n X(n)'

Parametros de simulacion

set.seed(12345)
theta_verdadera <- 10
n_vec <- c(5, 10, 30)
B <- 10000

theta_verdadera
## [1] 10
n_vec

## [1] 5 10 30
B

## [1] 10000

Funcidén de simulacidon

sim_estimadores <- function(n, theta, B = 10000) {
muestras <- matrix(runif(B * n, @, theta), nrow = B)

medias <- rowMeans(muestras)
maximos <- apply(muestras, 1, max)

data.frame(
n =n,
theta _tilde = 2 * medias,
theta_hat = (n + 1)/n * maximos
)

}



Correr simulaciones

resultados_lista <- lapply(n_vec, sim_estimadores,
theta = theta_verdadera, B = B)

resultados <- do.call(rbind, resultados_lista)

head(resultados)

## n theta_tilde theta_hat

## 1 5 10.446557 8.650847
## 2 5 16.629186 11.968946
## 3 5  14.389521 10.435692
## 4 5  14.444601 11.774803
## 5 5 7.545054 7.477126
## 6 5 8.237339 11.357798
Resumen

library(dplyr)

Hit

## Attaching package: 'dplyr’

## The following objects are masked from 'package:stats':
##
fHt filter, lag

## The following objects are masked from 'package:base’:
#H#
#i# intersect, setdiff, setequal, union

thetad <- theta_verdadera

resumen <- resultados |>
tidyr: :pivot_longer(
cols = c(theta_tilde, theta hat),

names_to = "estimador",
values to = "valor"
) >
group_by(n, estimador) |>
summarise (
media_sim = mean(valor),
sesgo_sim = mean(valor) - thetao,
var_sim = var(valor),
mse_sim = mean((valor - theta®)”2),
.groups = "drop"

)

resumen



##t # A tibble: 6 x 6

H## n estimador media_sim sesgo_sim var_sim mse_sim
##  <dbl> <chr> <dbl> <dbl> <dbl> <dbl>
## 1 5 theta hat 9.99 -0.0136 2.89 2.89
## 2 5 theta_tilde 9.98 -0.0238 6.63 6.63
## 3 10 theta_hat 9.98 -0.0154 0.858 0.858
## 4 10 theta_tilde 10.0 0.0123 3.37 3.37
## 5 30 theta hat 10.0 0.00331 ©0.103 0.103
## 6 30 theta tilde 10.0 0.0105 1.09 1.09

Graficas de las distribuciones simuladas
library(ggplot2)

datos_largos <- resultados |>
tidyr: :pivot_longer(
cols = c(theta_tilde, theta hat),
names_to = "estimador",
values_to = "valor"

)

datos_largos$estimador <- factor(
datos_largos$estimador,
levels = c("theta_tilde", "theta_hat"),

labels = c("tilde_theta = 2*Xbar", "hat_theta =

)

ggplot(datos_largos, aes(x = valor)) +

((n

+1)/n)*X_(n)")

geom_histogram(aes(y = after_stat(density)), bins = 40) +
geom_density(linewidth = 1) +
geom_vline(xintercept = theta_verdadera, linetype = "dashed") +
facet_grid(estimador ~ n, scales = "free") +
labs(

title = "Distribuciones simuladas de los estimadores de 6",

x = expression(theta hat),
y = "Densidad"

)



Distribuciones simuladas de los estimadores de 6
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Lab14Computo - Simulacion del TCL y la LGN

Carla Reyes

Teorema Central del Limite (TCL)

En este apartado simularemos el TCL con variables aleatorias Uniforme(0,1).

set.seed(123)

B <- 10000 # numero de simulaciones
n_vec <- c(5, 10, 30) # tamafios de muestra para %lustrar el TCL

par (mfrow=c(1,3))

for (n in n_vec) {
medias <- replicate(B, mean(runif(n, 0, 1)))

hist(medias, freq = FALSE, main = paste("n =", n),
xlab = "Media muestral", breaks = 30)

curve (dnorm(x, mean

= 0.5, sd = 1/sqrt(12*n)),
add = TRUE, 1lwd =

2)
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Observamos que conforme n aumenta, la distribucién de la media muestral se acerca mas a una normal.

Ley de los Grandes Nimeros (LGN)

Simulamos cémo la media muestral converge al valor esperado de una Uniforme(0,1), que es 0.5.

set.seed(123)

N <- 5000
X <- runif(N)
media_acumulada <- cumsum(x) / (1:N)

plot(media_acumulada, type="1", col="blue",
xlab="n", ylab="Media acumulada",
main="Ley de los Grandes Nameros")
abline(h = 0.5, col="red", lwd=2)



Ley de los Grandes Numeros
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La media acumulada converge hacia 0.5, lo que desmuestra la LGN.
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