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1 Introduction

The literature on information aggregation through voting presents a fundamental tension between
two perspectives. Condorcet’s (1785) Jury Theorem offers an optimistic view: when voters share
common interests but possess dispersed information about alternatives, majority voting can effec-
tively choose the commonly preferred—or correct—alternative. However, this optimism is chal-
lenged by Downs’s (1957) rational ignorance hypothesis, which posits that voters must acquire
information at a cost. Consequently, voters may rationally choose to remain uninformed, especially
in large electorates where an individual vote is unlikely to be pivotal. This gives rise to a free-rider
problem: while it would be socially beneficial for voters to be well-informed, it is not individually
rational for them to bear the costs of information acquisition when the benefits are shared by all.
As a result, there may be an under-provision of political information. This insight casts doubt on
whether a large electorate will choose the correct alternative and has spurred research on voters’
information acquisition and pivotality (e.g., Persico, 2004; Martinelli, 2006, 2007; Koriyama and
Szentes, 2009; Oliveros, 2013; Triossi, 2013).

We argue that the problem of rational ignorance may be alleviated by public opinion polls,
hereafter referred to as polls, that provide information about voting intentions. Polls facilitate
voters’ access to information about their potential pivotality. If a poll indicates a close election,
individual voters might perceive a higher probability of being pivotal, which could encourage them
to acquire more information. Conversely, a poll suggesting a one-sided election may discourage
information acquisition. This mechanism implies that polls could facilitate voters’ coordination in
acquiring information, thereby alleviating the free-rider problem.

Our goal is to examine the role of polls, focusing on their impact on voters’ information ac-
quisition and voting behavior, as well as on the probability that the electorate chooses the correct
alternative. We seek to elucidate how polls may influence information aggregation and mitigate
the free-rider problem in large electorates.

Model Consider a common-value election with simple majority rule. There are two alternatives, 1
and 0. There are N voters, with N being odd, each voting for either alternative. Each voter receives
a payoff of 1 if the majority vote chooses the “correct” alternative and a payoff of 0 otherwise. The
correct alternative is modeled by a state θ, a random variable that takes values 1 or 0 according to
a common prior µ.

Voters may acquire costly information about the state and about a poll that indicates a probable
vote share among the two alternatives. We model information acquisition using the framework of
rational inattention (Sims, 2003). In this framework, voters can acquire any costly signals that
may correlate with the state and the poll. This feature allows them to pay attention to the state if
the poll indicates a close race, but ignore it otherwise. Following Sims (2003), we assume that the
cost of information is proportional to the expected reduction in uncertainty, measured in terms of
entropy. Each voter maximizes her expected payoff from the collective decision, minus the private
cost of information.
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Figure 1: with opinion polls
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Figure 2: without opinion polls

Note: the distributions of the equilibrium vote shares in elections with the symmetric prior

In equilibrium, the following triadic relationship must hold: (i) voters’ behavior is individually
optimal under their beliefs; (ii) their beliefs are consistent with their information about the state
and the poll; and (iii) the poll is consistent with the voters’ actual behavior. An equilibrium is
defined as a fixed point of this interactive system. This equilibrium concept is built on Denti
(2023) and is interpreted by Hébert and La’O (2023) as a hybrid of a Bayesian Nash equilibrium
and a rational-expectations equilibrium where agents learn from endogenous aggregate behavior
while choosing their strategies, as in Grossman and Stiglitz (1980). In our context, this rational-
expectations interpretation translates into voters learning about average voting behavior from the
poll, while casting their votes. In addition, the equilibrium concept admits an interpretation as an
outcome of a dynamic electoral process.

There are two types of equilibrium: an informative equilibrium, where voters acquire infor-
mation; and an uninformative equilibrium, where they acquire no information. We show that an
informative equilibrium exists unless either state occurs with an extremely high prior probability,
and it is unique if it exists. In the Introduction, we focus on the informative equilibrium and refer
to it simply as the equilibrium.

Main Results We consider equilibrium voting behavior in an election with a poll. Figure 1 plots
the distributions of the equilibrium vote share for alternative 1, given state θ = 1. Here we assume
that the prior is symmetric, i.e., each state is equally likely. Since alternative 1 is chosen if the vote
share exceeds 0.5 and alternative 0 is chosen otherwise, the majority vote is correct on the right
side of 0.5 but incorrect on the left. It is notable that the distribution “jumps” at the winning
threshold of 0.5. This jump is in line with our intuition that voters can learn, from the poll, how
close the election could be, and that the poll encourages information acquisition when the election
is close.

What is the probability of choosing the correct alternative? Our first main result (Theorem 1)
is that in any election with an opinion poll, the probability of correct choice is independent of the
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number of voters N and a prior µ. In other words, in the presence of polls, Condorcet’s optimism
is perfectly balanced by Downs’s pessimism of rational ignorance, keeping the probability of correct
choice constant as the electorate size grows.

How is the equilibrium vote share distributed when the electorate becomes large? Our second
main result (Theorem 2) is that in any election with an opinion poll, as the number of voters
N tends to infinity, the equilibrium vote share converges in probability to 0.5 even if a prior µ is
asymmetric. In other words, a large election is likely to be close even if either alternative has a higher
prior probability of being correct. This result is illustrated in Figure 1, where the distributions
concentrate on the winning threshold of 0.5 as N increases.

Both theorems are still true under supermajority rule, including unanimity rule. That is, the
probability of correct choice is independent of the winning threshold as well as of the number of
voters N and a prior µ (Theorem 1′); moreover, the equilibrium vote share converges in probability
to the winning threshold as N increases even if µ is asymmetric (Theorem 2′).

Comparison between Elections with and without Opinion Polls Do polls help the electorate
make the correct decision? To address this question, we compare an election with a poll to an
otherwise identical election without a poll. Without a poll, voters only learn about a state, as in
the earlier studies of the rational ignorance hypothesis. Figure 2 plots the equilibrium vote-share
distributions when polls are unavailable. There is no jump at the winning threshold of 0.5, but
instead the distributions are shifted in the direction of the correct alternative.

We demonstrate that the probability of correct choice is strictly higher in any election with an
opinion poll than in the identical election without an opinion poll, when the number of voters N is
large and the prior µ is nearly symmetric, µ(1) ≈ 1

2 (Proposition 1). This result highlights the role
of polls in the acquisition and aggregation of information.

Regression Discontinuity Design in Close Elections Our findings offer novel implications for the
regression discontinuity (RD) design in close elections. This is a common empirical strategy
to identify treatment effects in electoral environments by, roughly speaking, comparing a candidate
who barely wins an election with a candidate who barely loses. This approach has been widely
used in the literature.

Despite the wide applications, the validity of the RD design in close elections has often been
questioned. Its validity relies on the assumption that those candidates whose vote shares are
immediately above the winning threshold are not systematically different from those whose vote
shares are immediately below the threshold (Hahn, Todd, and Van der Klaauw, 2001). A violation
of this assumption is known as sorting in the literature. Existing evidence is mixed. Caughey
and Sekhon (2011) show that winners and losers in close U.S. House of Representatives elections
significantly differ on pretreatment covariates, such as finance and incumbency; Snyder (2005) finds
that incumbents won a disproportionate share of close U.S. House elections. In contrast, Eggers,
Fowler, Hainmueller, Hall, and Snyder (2015) do not detect sorting in many close elections, yet
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confirm Snyder’s (2005) finding for the U.S. House elections. These conflicting findings highlight
the need to better understand what could lead to sorting, if it exists.

What could cause sorting? One possibility is post-election manipulation of vote counts (Snyder,
2005). Another is that well-organized campaigns might be able to exert precisely measured effort
before the election to secure victory in close races (Caughey and Sekhon, 2011). These mechanisms,
however, hinge on availability of voting information about the elections, which is reminiscent of
polling. Indeed, Eggers et al. (2015) note that close U.S. House elections, in which sorting is
repeated detected, are more frequently polled than most other elections for which RD designs have
been employed.

We propose a novel mechanism to explain how polling could result in sorting in close elections,
based exclusively on individual voter decisions. As shown in Figures 1 and 2, the vote-share
distribution has a jump at the winning threshold if and only if an election is polled. This finding
suggests the following interpretation: even when alternatives are ex-ante identical, the electorate
may coordinate, through polls, to make the (ex-post) correct decision by a narrow margin. This
polling-based mechanism is compatible with existing studies and helps reconcile the mixed evidence
in the literature.

Related Literature Our study bridges the literature on rational ignorance and that on rational
inattention. Downs’s (1957) rational ignorance hypothesis argues that voters acquire information
only when the benefits outweigh the costs. It suggests that individual voters may rationally choose
to remain uninformed about politics in large elections, where the probability of being pivotal is
low.1 This hypothesis, by endogenizing voters’ information acquisition, can be seen as a precursor
to the modern approach of rational inattention. Existing studies of rational ignorance assume a
“rigid” information structure, making parametric assumptions about the signal structures available
to voters. Martinelli (2006) assumes that voters choose a parameter of signal precision about the
correct alternative. He examines whether, in large electorates, the deterioration in signal quality,
which stems from reduced incentives for information acquisition due to lower pivot probabilities,
can outweigh the benefit of having more individual signals. Building on this model of information
acquisition, Oliveros (2013) incorporates heterogeneous preferences, while Triossi (2013) introduces
heterogeneous costs of information. Other related studies further restrict voters’ decisions to a
binary choice of whether to purchase a fixed-quality signal or not (e.g., Mukhopadhaya, 2003; Per-
sico, 2004; Martinelli, 2007; Gerardi and Yariv, 2008; Koriyama and Szentes, 2009). Experimental
studies implement similar binary-choice information acquisition models (e.g., Bhattacharya, Duffy,
and Kim, 2017; Elbittar, Gomberg, Martinelli, and Palfrey, 2020).

Our study is not the first to consider voters learning about their probability of being pivotal.
1In elections with exogenous information, Austen-Smith and Banks (1996) and Feddersen and Pesendorfer (1996)

identify an incentive for voters to rationally disregard their private information. They argue that the value of a voter’s
pivotality interacts with the “swing voters’ curse,” which occurs when uninformed voters might prefer to abstain to
avoid potentially canceling out the votes of more informed voters who share their preferences. This may lead voters
to disregard their private information, because being pivotal itself signals how others are likely voting, which can be
more informative than a voter’s private signal.
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Ekmekci and Lauermann (2022) assume that voters receive information about the electorate size,
which indirectly informs them about their probability of being pivotal. They show that availability
of such information may result in inefficient information aggregation. Due to the exogenous nature
of information in their setting, they do not explore its implications for voters’ information acqui-
sition, which is our focus. In our model, voters are sure about the electorate size but may learn
about a probable vote share through polls, which influences their probability of being pivotal.

The literature has examined the impact of communication between voters on information ag-
gregation through voting. Assuming that voters have exogenous information, Feddersen and Pe-
sendorfer (1998) show that without any communication between voters, unanimity rule results in
voters disregarding a part of information to account for the “swing voter’s curse.” In response to
this conclusion, Coughlan (2000) observes that a single round of cheap talk communication could
allow for full information sharing. Gerardi and Yariv (2007) consider more general cheap-talk pro-
tocols, showing that a wide class of voting rules is equivalent with respect to equilibrium outcomes
following the cheap talk. While these earlier studies explore the impact of information-sharing
technology, we consider voters’ acquisition of information about polls and show that an analogous
equivalence result still holds (Theorems 1′ and 2′): if polls are available, the equilibrium probability
of correct choice is independent of voting rules (i.e., simple majority, supermajority, or unanimity
rule); in addition, a large election tends to be close regardless of these voting rules. This suggests
that the underlying equivalence stems from voters learning about others, rather than from the
specific modeling of information sharing.2

Although the rational inattention framework has not been used to examine the implications of
the rational ignorance hypothesis, it has found other applications in political economy. Matějka
and Tabellini (2021) examine a spatial model of electoral competition in which voters are rationally
inattentive, and two candidates select their policies. Yuksel (2022) explores political polarization
among rationally inattentive voters, and Li and Hu (2023) investigate politicians’ accountability
with rationally inattentive voters.3

Layout The remainder of this paper is organized as follows. Section 2 studies elections with
opinion polls, providing main results. Section 3 compares elections with opinion polls to those
without in terms of the probabilities of correct choice. Section 4 discusses the implications of our
findings for the regression discontinuity design in close elections. Section 5 concludes by discussing
extensions and limitations of our analysis. The proofs are found in Appendix A.

The replication code for all figures in this paper is available at this webpage.
2Experimental studies examine the effect of polls. Sinclair and Plott (2012) find that voters update their beliefs

when they are, through polls, informed about others’ voting intentions and show that the number of voting errors
decreases as more polls become available. Agranov, Goeree, Romero, and Yariv (2018) conjecture that voters are
interested in the likelihood of being pivotal and observe that the availability of polls affects their decisions.

3These papers assume that there is a continuum of rationally inattentive agents. While this modeling may have
certain advantages, it would not provide an appropriate framework for our question, which seeks to explore the
balance between the Condorcet-type information aggregation and the free-riding incentives of the rational ignorance
hypothesis. This is because an individual voter in a continuum would have an infinitesimally small impact, would
never be pivotal, and thus would never acquire costly information.
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2 Elections with Opinion Polls

In this section, we study elections with opinion polls. We first introduce an election model and an
equilibrium concept and then examine equilibria in finite-voter elections. Lastly, we study large
elections when the number of voters tend to infinity.

2.1 Model

Base Environment There are N = 2n + 1 voters, denoted i = 1, . . . , N , for an integer n ≥ 0.
There are two alternatives a ∈ A = {0, 1}. Each voter i votes for alternative ai, which we call
action ai ∈ A. As usual, let a = (a1, . . . , aN ) be an action profile and a−i be an action profile of all
voters but i. No abstention is allowed. Given an action profile a, the vote share (of alternative
1) is defined as

āN = 1
N

N󰁛

i=1
ai,

while the vote share of alternative 0 is 1 − āN . Majority vote chooses alternative 1 if āN > 1
2 and

alternative 0 otherwise. That is, the chosen alternative is 1{āN > 1
2}, where 1 is the indicator

function. There is no tie, since N is odd.
All voters have common interests and want to choose the correct alternative, which is initially

unknown. The correct alternative is modeled by a state θ, a random variable with a common prior
µ over a set Θ = {0, 1}. The prior µ is said to be symmetric if µ(1) = 1

2 and asymmetric otherwise.
Each voter’s payoff is 1 if the chosen alternative is correct and 0 otherwise. Formally, we define
each voter’s payoff function u : [0, 1] × Θ → {0, 1} by

u(āN , θ) =

󰀻
󰀿

󰀽
1 if 1{āN > 1

2} = θ

0 if 1{āN > 1
2} ∕= θ.

Information Acquisition Voters acquire information at cost. They have two variables to learn
about: the state θ and an opinion poll that indicates how the votes in the rest of the electorate are
likely to split. Specifically, voter i may acquire information about the vote share ā−i = 1

N−1
󰁓

j ∕=i aj .
We model voters’ information acquisition, using the rational-attention framework (Sims, 2003).

In this framework, voters flexibly choose what information to acquire, not only how much to acquire.
This flexibility enables voters, for example, to learn more about θ when the election is likely to be
close, and less so when it is not.

We now define voter i’s strategies. She chooses a signal structure consisting of a signal space Si

and a conditional distribution σi(· | ā−i, θ) ∈ ∆(Si) for each (ā−i, θ) and then takes an action based
on a signal realization. We can restrict, without loss of generality, voter i to “direct” signal struc-
tures where the signal space is Si = A and a signal realization si is interpreted as a recommendation
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to take action si.4 Consequently, she chooses a conditional action distribution Pi(· | ā−i, θ) ∈ ∆(A)
for each (ā−i, θ). Her strategy is the system of conditional action distributions Pi.

The cost of information is linear in mutual information (e.g., Sims, 2003; Matějka and McKay,
2015). Mutual information measures the reduction of voter i’s uncertainty about (ā−i, θ) due to
information acquisition. This uncertainty is measured in terms of entropy. Suppose that she has
a prior µi(ā−i, θ), which is endogenously formed in equilibrium (defined below). Then, the mutual
information of Pi under µi is

I(ā−i, θ; ai) ≡ H(ā−i, θ) − H(ā−i, θ | ai),

where H is the entropy function. That is, H(ā−i, θ) is the entropy of (ā−i, θ), where (ā−i, θ) is
distributed according to µi, and H(ā−i, θ | ai) is the conditional entropy of (ā−i, θ) given ai, where
(ai, ā−i, θ) is distributed according to Pi and µi.5 That is, I(ā−i, θ; ai) is the expected reduction of
entropy by observing ai. The information cost of Pi under µi is λI(ā−i, θ; ai), where λ > 0 is the
unit cost of information.

We denote the election with a poll by PN , omitting the prior µ and the unit cost of information
λ.

2.2 Equilibrium

Voter i’s strategy Pi is said to be optimal under her belief µi if it maximizes her expected payoff
minus her information costs, E[u(āN , θ)] − λI(ā−i, θ; ai), where E[u(āN , θ)] is the expected payoff
with respect to the distribution over (ai, ā−i, θ) induced by (Pi, µi).

We define an equilibrium by the following triadic relationship: voters’ strategies are optimal
under their beliefs; their beliefs are consistent with their information about the state and a poll; and
the poll is consistent with the voters’ strategies. Formally, the equilibrium is the joint distribution
over action profiles and states, which is induced by voters’ strategies and beliefs.

Definition 1. An equilibrium of an election PN is a distribution P ∗
N ∈ ∆(AN × Θ) that satisfies

the following two conditions:
1. The marginal distribution of θ is the prior µ; namely, µ(θ) =

󰁓
a∈AN P ∗

N (a, θ).
2. Each voter i’s strategy Pi is optimal under her belief µi, where µi is the marginal distribution

of (ā−i, θ) and Pi is the conditional distribution of ai given (ā−i, θ); namely,

µi(x, θ) =
󰁛

ai

󰁛

a−i:ā−i=x

P ∗
N (ai, a−i, θ),

4By a standard argument from the literature (e.g., Matějka and McKay, 2015), every pair of a signal structure
and a mapping from signal realizations to actions admits a (weakly) cheaper direct signal structure that induces the
same conditional action distribution given each (ā−i, θ). Also, voter i does not randomize among signal structures.

5The entropy H(Y ) of a discrete random variable Y is defined as H(Y ) = −
󰁓

y
pY (y) ln pY (y), where pY is the

probability mass function of Y . The conditional entropy H(Z | Y ) of a discrete random variable Z given Y is defined
as H(Z | Y ) = −

󰁓
y

pY (y)
󰁓

z
pZ|Y (z | y) ln pZ|Y (z | y), where pZ|Y is the conditional probability mass function of

Z given Y . See Cover and Thomas (2006, Chapter 2) for a comprehensive treatment.

8



Pi(ai | x, θ) = 1
µi(x, θ)

󰁛

a−i:ā−i=x

P ∗
N (ai, a−i, θ).

We focus on a symmetric equilibrium, in which the strategies and beliefs are identical across
all voters. Even in a symmetric equilibrium, voters may receive different signal realizations and
thus vote for different alternatives.

This equilibrium concept, built on Denti (2023), is interpreted by Hébert and La’O (2023) as
a hybrid of a Bayesian Nash equilibrium and a rational-expectations equilibrium. It is a Bayesian
Nash equilibrium in the sense that agents behave optimally under uncertainty. It is a rational-
expectations equilibrium in the sense that agents learn from endogenous aggregate behavior while
simultaneously choosing their strategies as in Grossman and Stiglitz (1980). Agents’ behavior is
optimal under their beliefs, while their beliefs are consistent with their endogenous behavior. The
equilibrium is then a fixed point of this interactive system. In our context, an opinion poll facilitates
the rational-expectations interpretation. Voters make decisions while learning about a state and
the poll; their voting behavior is consistent with the poll, because otherwise, the poll would fail to
reflect voting behavior.

This equilibrium concept, though fully static, admits an interpretation as an outcome of a
dynamic electoral process. This is in line with the stochastic best-response dynamics interpretation
(the 2020 working paper version of Denti, 2023; Hoshino, 2018). Consider a sequential procedure
where, at each period, one voter is randomly selected and receives an opportunity to acquire
information and myopically revise her decision. Any revisions would be reflected in the subsequent
poll, and the revision process would then repeat. This revision protocol can be viewed as a model
of an environment in which polling is frequent and accessible to all voters. The myopia assumption
would be sensible in large elections since individual votes have negligible impacts. This protocol
results in a Markov chain that converges to a unique stationary distribution. The stationary
distribution coincides with the equilibrium behavior of Definition 1.

An equilibrium vote share of a symmetric equilibrium P ∗
N is defined as āN = 1

N

󰁓N
i=1 ai,

where action profile a = (a1, . . . , aN ) and state θ are distributed according to P ∗
N . The conditional

probability that āN is in an interval T given state θ is Pr(āN ∈ T | θ) =
󰁓

a:āN ∈T P ∗
N (a | θ), where

Pr denotes the probability. The conditional probabilities of choosing alternatives 1 and 0 given
state θ are Pr(āN > 1

2 | θ) and Pr(āN < 1
2 | θ), respectively. The unconditional probability of

correct choice is defined as

Pr(u(āN , θ) = 1) = µ(1) Pr
󰀕

āN >
1
2 | θ = 1

󰀖
+ µ(0) Pr

󰀕
āN <

1
2 | θ = 0

󰀖
. (1)

A symmetric equilibrium P ∗
N is said to be uninformative if everyone votes without acquiring

any information.6 A symmetric equilibrium P ∗
N is said to be informative if it is not uninformative

(i.e., if all voters acquire some information).
6If N ≥ 3, there exist two uninformative equilibria in which all vote for alternatives 1 or 0, respectively. This is

because when the other N − 1 voters vote for either alternative, the remaining voter acquires no information.
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It is well known that the optimal behavior under entropy-based costs is given by a biased-
logit distribution (Matějka and McKay, 2015; Caplin, Dean, and Leahy, 2019; Denti, 2023). We
demonstrate that our model has at most one informative equilibrium. To show this, we characterize
equilibrium biased-logit distributions.

Lemma 1. Every symmetric equilibrium P ∗
N of any election PN has some p∗

N ∈ [0, 1] such that for
each θ and each k = 0, 1, . . . , N , the equilibrium vote share āN satisfies

Pr
󰀕

āN = k

N
| θ

󰀖
= 1

ZN (p∗
N , θ)

󰀣
N

k

󰀤

exp
󰀣

u( k
N , θ)
λ

󰀤

(p∗
N )k(1 − p∗

N )N−k, (2)

where ZN : [0, 1] × Θ → R is the function defined by

ZN (p, θ) =
N󰁛

k=0

󰀣
N

k

󰀤

exp
󰀣

u( k
N , θ)
λ

󰀤

pk(1 − p)N−k, (3)

and p∗
N ∈ [0, 1] is the unconditional probability of each individual voting for alternative 1.

One of the following holds:
1. P ∗

N is an uninformative equilibrium if and only if p∗
N ∈ {0, 1}.

2. P ∗
N is an informative equilibrium if and only if p∗

N ∈ (0, 1) is a solution to equation

ZN (p, 1)
ZN (p, 0) = µ(1)

µ(0) . (4)

Informative Equilibrium By Lemma 1, an informative equilibrium exists if and only if (4) has
a solution p∗

N ∈ (0, 1). Figure 3 plots ZN (p,1)
ZN (p,0) as a function of p. Note that it is continuous

and strictly increasing in p and ranges from e−1/λ to e1/λ.7 This implies that there is a unique
informative equilibrium if µ(1)

µ(0) is between e−1/λ and e1/λ. This observation is formalized below.
7It is shown in the proof of Lemma 2.
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Condition 1. An election PN has the unit cost of information λ and the prior µ such that

e−1/λ <
µ(1)
µ(0) < e1/λ.

Lemma 2. Every election PN has an informative equilibrium if and only if it satisfies Condition
1. The informative equilibrium is unique if it exists.

How does the informative equilibrium vote-share distribution (2) look? Figure 1 in Section 1
plots the vote-share distributions at state θ = 1 for the case of the symmetric prior µ, given the
unit cost of information λ = 1. Figure 4 here shows the same distributions under the identical
conditions, but for the case of asymmetric priors µ, µ(1) = 0.6, 0.4.8 In these figures, the hor-
izontal axis indicates a vote share x, and the vertical axis indicates the conditional probability
Pr(āN = x | θ = 1).

The informative equilibrium vote-share distribution “jumps” at the winning threshold of 0.5,
which increases the probability of correct choice. The reason for this jump is in line with our intu-
ition that an opinion poll indicating a close election encourages voters to acquire more information
and vote for the correct alternative.

2.3 Equilibrium Probability of Correct Choice

The informative equilibrium vote-share distribution changes as the number of voters N varies, but
we show that the probability of correct choice does not.

Theorem 1. Every election PN satisfies the following properties:
1. In an uninformative equilibrium, with everyone voting for alternative a = 0, 1, the probability

of correct choice is µ(a).
2. In an informative equilibrium, the probability of correct choice is

Pr(u(āN , θ) = 1) = e1/λ

1 + e1/λ
. (5)

The informative equilibrium, if it exists, has a strictly greater probability of correct choice than the
uninformative equilibria: e1/λ

1+e1/λ > max{µ(1), µ(0)}.

Theorem 1 states that in the informative equilibrium, the probability of correct choice (5) is
independent of the number of voters N and the prior µ. It demonstrates the perfect balance between
Condorcet’s (1785) optimism and Downs’s (1957) pessimism. Increasing N influences the quality of
the group decision in two ways: the positive effect of aggregating information from more voters, and
the negative effect of each voter acquiring less information. Condorcet’s Jury Theorem assumes
that voters’ information is exogenous and independent; thus, the positive effect translates into
the law of large numbers and the negative effect is absent. Downs’s rational ignorance hypothesis,

8Condition 1 is satisfied: µ(1)
µ(0) = 3

2 , 2
3 if µ(1) = 0.6, 0.4, respectively; e−1 ≈ 0.3679 and e ≈ 2.7183.
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Figure 4: the distribution of the informative equilibrium vote share

which posits that voters’ information is endogenous (and is independent in existing studies) stresses
the negative effect. In contrast, we assume that voters’ information is endogenous and correlated
through polls, demonstrating that the two opposing effects precisely cancel out each other.

We sketch the proof of Theorem 1. The conditional probability of choosing alternative 1 at
state θ = 1 is Pr(āN > 1

2 | θ = 1) =
󰁓N

k=n+1 Pr(āN = k
N | θ = 1), and the conditional probability

of choosing alternative 0 at state θ = 0 is Pr(āN < 1
2 | θ = 0) =

󰁓n
k=0 Pr(āN = k

N | θ = 0). We
express these probabilities using (2) and (4) and substitute them into (1), obtaining the theorem.

2.4 Large Elections

What happens to the equilibrium vote share āN when the number of voters N increases? We
examine the limiting probability limN→∞ Pr(āN ∈ T ) for any interval T ⊂ [0, 1]. This analysis
is not trivial. We cannot use basic tools such as the law of large numbers, because the behavior
of any two voters is correlated and each voter’s individual behavior changes as N changes. The
equilibrium behavior is neither independently nor identically distributed.

We show that as the number of voters N increases, the unconditional probability p∗
N that each

voter chooses alternative 1 approaches 1
2 even if the prior µ is asymmetric. That is, even if either

alternative has a higher prior of being correct, p∗
N is close to 1

2 for any large N . In a sense,
voters are “neutralized” from their asymmetric prior. By Lemma 1, p∗

N solves (4) in an informative
equilibrium; namely, p∗

N is determined by the intersection of ZN (p,1)
ZN (p,0) and µ(1)

µ(0) . Figure 3 plots ZN (p,1)
ZN (p,0)

as a function of p and the likelihood ratio µ(1)
µ(0) ∕= 1 associated with an asymmetric prior µ. This

figure illustrates that p∗
N approaches 1

2 as N increases.

Lemma 3. For each N , let P ∗
N be the informative equilibrium of any election PN that satisfies

Condition 1. Then,

lim
N→∞

p∗
N = 1

2 .
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Next we demonstrate that a large election has a high probability of being close. This result is
illustrated in Figures 1 and 4: as the number of voters N increases, the informative equilibrium
vote shares converge in probability to 1

2 , even if the prior µ is asymmetric.

Theorem 2. For each N , let āN be the vote share in the informative equilibrium P ∗
N of any election

PN that satisfies Condition 1. For each 󰂃 > 0,

lim
N→∞

Pr
󰀕󰀏󰀏󰀏󰀏āN − 1

2

󰀏󰀏󰀏󰀏 < 󰂃

󰀖
= 1.

Here is an intuition for Theorem 2. Given a large electorate, each voter has a low probability of
being pivotal and thus acquires almost no information. Hence, the conditional probability of each
voter choosing alternative 1 given any state θ must be close to the unconditional probability p∗

N ,
which is close to 1

2 by Lemma 3. This, in turn, suggests that the vote share should be close to 1
2

conditional on any θ. This illustration may be intuitive but is informal because voters’ behavior
is correlated in a complicated way, and we cannot rely on the law of large numbers, for example.
To overcome this difficulty, we approximate the probability Pr(|āN − 1

2 | < 󰂃) with a more tractable
form and then evaluate the approximation error.9

3 Comparison between Elections with and without Opinion Polls

We examine the role of polls by comparing elections with polls and those without. Then, we show
that polls help a large electorate make the correct decision when a prior is nearly symmetric.

3.1 Elections without Opinion Polls

Base Environment The base environment is the same as in Section 2, but we use different notation
for the sake of comparison between elections with and without polls. For the elections without polls,
we denote voter i’s action by bi ∈ A. Let b = (b1, . . . , bN ) be an action profile and b−i be an action
profile of all voters but i. Given an action profile b, we denote the vote share of alternative 1 by
b̄N = 1

N

󰁓N
i=1 bi ∈ [0, 1].

Information Acquisition We model information acquisition in the same way as in Section 2, except
that now voters have no access to polling information. They only learn about state θ. We assume,
without loss of generality, that voter i choose a conditional action distributions, which we denote
by Qi(bi | θ). Her strategy is the system of conditional action distributions Qi. This environment

9Hoshino and Ui (2024) study a class of games in which rationally inattentive players strategically interact. They
examine the asymptotic equilibrium behavior as the number of players tends to infinity, but their model and analysis
are different from ours. In our model, each voter’s decision has a negligible impact on her own payoff and thus acquires
negligible information when there are many voters. Hoshino and Ui allow each player’s action to affect her payoff
regardless of the number of players. Their model includes macro-finance settings, such as Keynesian beauty contests.
This difference is crucial, requiring different analytical methods: we rely on Sanov’s theorem, but this theorem is
inapplicable to their class of games; Lemma 3 and Theorem 2 are specific to our setting and do not follow from their
method.
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differs from the one with a poll in that all voters’ choice of action is conditionally independent given
θ.

The cost of information is modeled in the same way as in Section 2. Since voters acquire
information only about θ, mutual information measures the reduction of the entropy about θ due
to information acquisition. The mutual information of Qi under µ is I(θ; bi) = H(θ) − H(θ | bi),
where H(θ) is the entropy of θ, and H(θ | bi) is the conditional entropy of θ given bi, where the
distribution of (bi, θ) is induced by Qi and µ. The information cost of Qi is λI(θ; bi), where λ > 0
is the unit cost of information.

We denote the election without a poll by QN , omitting the prior µ and the unit cost of
information λ.

Equilibrium Voter i’s strategy Qi is said to be optimal given the others’ strategies Q−i = (Qj)j ∕=i

if it maximizes her expected payoff minus her information costs: E[u(b̄N , θ)] − λI(θ; bi), where
E[u(b̄N , θ)] is the expected payoff with respect to the distribution over (bi, b−i, θ) induced by
(Qi, Q−i, µ).

We define an equilibrium of the election without a poll QN as a strategy profile (Q∗
1, . . . , Q∗

N )
such that each voter i’s strategy Q∗

i is optimal given the others’ strategies Q∗
−i. As in Section 2,

we focus on a symmetric equilibrium, in which the equilibrium strategies are identical across
all voters, Q∗

1 = · · · = Q∗
N . We denote by Q∗

N a symmetric equilibrium by abuse of notation.10 A
symmetric equilibrium Q∗

N is said to be uninformative if all voters vote without acquiring any
information, and it is said to be informative if it is not uninformative.

An equilibrium vote share of a symmetric equilibrium Q∗
N is defined as a random variable

b̄N = 1
N

󰁓N
i=1 bi, where b1, . . . , bN are i.i.d. random variables with the distribution Q∗

N (· | θ) condi-
tional on state θ. The conditional probability that b̄N is in an interval T ⊂ [0, 1] given state θ is
Pr(b̄N ∈ T | θ) =

󰁓
b:b̄N ∈T

󰁔N
i=1 Q∗

N (bi | θ).
We study a symmetric equilibrium. Suppose that all voters j ∕= i choose the same strategy Q∗

N .
Then, voter i’s gross payoff (excluding information costs) when playing a strategy Qi is

󰁛

θ

µ(θ)
2n󰁛

k=0

󰀣
2n

k

󰀤

(Q∗
N (1 | θ))k(Q∗

N (0 | θ))2n−k
󰁛

bi

Qi(bi | θ)u(b̄N , θ),

where b̄N = (k + bi)/N is the vote share when among N − 1 = 2n voters, k vote for alternative 1
and 2n − k vote for alternative 0. Voter i’s vote bi affects her gross payoff if and only if her vote is
pivotal: if k = n then her gross payoff is 1{bi = θ}; if k ∕= n then her gross payoff is independent
of bi. The probability of being pivotal at state θ is ΠN (θ) ≡

󰀃2n
n

󰀄
(Q∗

N (1 | θ))n(Q∗
N (0 | θ))n when

voters −i play Q∗
N . Then, voter i’s gross payoff is

󰁓
θ µ(θ)(ΠN (θ) · Qi(θ | θ) + 0 · Qi(1 − θ | θ)) plus

10In a symmetric equilibrium, voters may receive different signal realizations, voting for different alternatives.
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a constant, and her problem is equivalent to

max
Qi

󰁛

θ

µ(θ)ΠN (θ)Qi(θ | θ) − λI(θ; bi). (6)

This problem is what Matějka and McKay (2015) and Caplin et al. (2019) have studied. They have
shown that the optimal strategy is a biased-logit distribution. The following lemma is immediate
from their results.

Lemma 4. Every symmetric equilibrium Q∗
N of any election QN has some q∗

N ∈ [0, 1] such that

Q∗
N (1 | 1) = q∗

N eΠN (1)/λ

q∗
N eΠN (1)/λ + 1 − q∗

N

, Q∗
N (1 | 0) = q∗

N

q∗
N + (1 − q∗

N )eΠN (0)/λ
, (7)

where Q∗
N (0 | θ) = 1 − Q∗

N (1 | θ) and ΠN (θ) =
󰀃2n

n

󰀄
(Q∗

N (1 | θ))n(Q∗
N (0 | θ))n for each θ = 0, 1, and

q∗
N ∈ [0, 1] is the unconditional probability of each voter voting for alternative 1.

One of the following holds:
1. Q∗

N is an uninformative equilibrium strategy if and only if q∗
N = 0 or q∗

N = 1.
2. Q∗

N is an informative equilibrium strategy if and only if q∗
N ∈ (0, 1).

Large Elections We study a large election, where the number of voters N tends to infinity. In line
with the rational ignorance hypothesis, the probability of a single vote being pivotal vanishes and
each voter acquires less information. Indeed, since limN→∞ ΠN (θ) = 0, it follows, from Lemma 4,
that

lim
N→∞

|Q∗
N (1 | 1) − q∗

N | = 0, lim
N→∞

|Q∗
N (1 | 0) − q∗

N | = 0.

This implies that for any subsequence of {q∗
N }N (which we denote by {q∗

N }N by slight abuse
of notation) that has the limit q∗

∞ ≡ limN→∞ q∗
N , the equilibrium vote share b̄N converges in

probability to a constant. Formally, we have the following lemma:

Lemma 5. For any subsequence of a sequence of symmetric equilibria {Q∗
N }N , still denoted

{Q∗
N }N , along which the limit q∗

∞ = limN→∞ q∗
N exists, and for any 󰂃 > 0,

lim
N→∞

Pr(|b̄N − q∗
∞| < 󰂃) = 1.

From Lemma 5, it follows that if q∗
∞ > 1

2 then the limit probability of correct choice is µ(1)
since the electorate chooses alternative 1; similarly, if q∗

∞ < 1
2 then the limit probability of correct

choice is µ(0). The only nontrivial case is, therefore, the case of q∗
∞ = 1

2 . The limit probability of
correct choice in this case is given in the following lemma.

Lemma 6. For any subsequence of a sequence of symmetric equilibria {Q∗
N }N , still denoted

{Q∗
N }N , along which the limit q∗

∞ = limN→∞ q∗
N exists, one of the following holds:
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1. If q∗
∞ > 1

2 then the probability of correct choice converges to µ(1), while if q∗
∞ < 1

2 then the
probability of correct choice converges to µ(0).

2. If q∗
∞ = 1

2 then the probability of correct choice converges to either µ(1), µ(0), or

lim
N→∞

Pr(u(b̄N , θ) = 1) = µ(1)Φ(t1) + µ(0)Φ(t0), (8)

where (t1, t0) is a solution to equations

λµ(0)(t1 + t0) = φ(t1),

λµ(1)(t1 + t0) = φ(t0).

Here, Φ and φ denote the standard normal cdf and pdf, respectively.

The proof of Lemma 6 is somewhat subtle. The central limit theorem is inapplicable because
voters’ behavior, described by their equilibrium strategies Q∗

N , varies as the number of voters N

changes. Instead, we rely on Berry–Esseen theorem, which quantifies a normal approximation by
providing a bound on the difference between the actual distribution and the normal distribution
for any finite N .

3.2 Comparison between Elections with and without Opinion Polls

We compare the probability of correct choice of elections with and without polls. Our result is
that for any unit cost of information λ and any nearly symmetric prior µ(1) ≈ 1

2 , polls increase the
probability of correct choice when there are sufficiently many voters.

Proposition 1. For any unit cost of information λ > 0, there exists an 󰂃 > 0 such that for any
prior µ with |µ(1) − 1

2 | < 󰂃, there exists an N̄ ∈ N such that for any N > N̄ , the probability of
correct choice in the informative equilibrium P ∗

N of the election with opinion polls PN is strictly
greater than that in any symmetric equilibrium Q∗

N of the election without opinion polls QN .

Proposition 1 is illustrated in Figure 5, which plots the probabilities of correct choice as a
function of a unit cost λ in the elections with and without polls in the case of the symmetric prior
µ(1) = 1

2 . The blue graph is the informative equilibrium probability of correct choice Pr(u(āN , θ) =
1) = e1/λ

1+e1/λ in the election with polls (Theorem 1), which is independent of N . The orange graph
is the limit probability of correct choice limN→∞ Pr(u(b̄N , θ) = 1) in the election without polls
(Lemma 6). The key to Proposition 1 is to show that the blue graph is above the orange graph.
Once we establish it, since limN→∞ Pr(u(b̄N , θ) = 1) is continuous in µ, we have the desired result
for any nearly symmetric prior µ(1) ≈ 1

2 .
Lastly, we note how the probability of correct choice varies as the unit cost λ vanishes. Infor-

mation accessibility helps the electorate make the correct decision. As in Figure 5, the probability
of correct choice tends to 1 as λ vanishes regardless of whether the election is polled or not, but
polls increase the probability of correct choice for any λ > 0.
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Figure 5: Proposition 1 under the symmetric prior µ

4 Regression Discontinuity Design in Close Elections

Our findings offer novel implications for the regression discontinuity (RD) design in close
elections. The RD design in such contexts identifies electoral treatment effects based on the as-
sumption that narrowly winning and narrowly losing candidates are similar in all respects, except
for the election outcome. However, our results demonstrate that better candidates may systemati-
cally win close elections when polls are available. This offers a new perspective to interpret mixed
evidence about the RD validity discussed in the existing literature.

Regression Discontinuity Design The RD design, initially proposed by Thistlethwaite and Camp-
bell (1960), is an empirical strategy for identifying treatment effects without random experimental
assignments of subjects to treatments. In electoral settings, the RD design is applied to close
elections because the comparison between narrowly winning and narrowly losing candidates is con-
sidered an ideal quasi-experiment. The key to the RD design is the continuity assumption, which
posits that narrowly winning candidates, whose vote shares are just above the winning thresh-
old, and narrowly losing candidates, whose vote shares are just below the threshold, have similar
distributions of unobservable characteristics (Hahn et al., 2001).

Numerous studies utilize the RD design in close elections. Lee (2001, 2008) employs the RD
design to estimate the incumbency advantage in future U.S. congressional elections. Ferreira and
Gyourko (2009, 2014) use the RD design to explore the impact of political parties and politicians’
gender on municipal fiscal policies in the U.S. Firpo, Ponczek, and Sanfelice (2015) apply the
RD design to study the federal budget process in Brazil. Dell (2015) leverages the RD design to
investigate the interaction between drug trafficking networks and drug-related violence in Mexico.

Despite their wide application, the validity of the RD design in close elections is often questioned.
This validity hinges on the continuity assumption, but this assumption would be violated when
certain types of candidates systematically win close races, resulting in the so-called sorting. As
discussed in Section 1, the existing literature provides mixed evidence about the existence of sorting.
As de la Cuesta and Imai (2016) summarize in their survey, “the literature is remarkably divided
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on the question of whether sorting exists in the close election context.”

Novel Mechanism for Sorting As discussed in Section 1, Eggers et al. (2015) point out polls as a
possible reason for sorting in close elections. The novel mechanism that we propose is line with their
insight. The proposed mechanism is illustrated in Figures 1 and 2, which plot the equilibrium vote-
share distributions under the symmetric prior given state θ = 1. Figure 1 shows that in elections
with polls, there is a jump at the winning threshold of 0.5. This jump occurs because a voter who
learns that she might be pivotal through the poll has a strong incentive to acquire information and
vote for the correct candidate. This behavior near the threshold increases the probability of the
correct candidate winning. In contrast, Figure 2 shows that in elections without polls, there is no
such jump because a voter never learns about her pivotality.

Thus, our results suggest that in the presence of polls, the better candidate should systematically
win with a substantially higher probability, regardless of how close the election is (Theorems 1 and
2). The identity of the better candidate may not be observable, but it may be correlated with
observable variables, such as incumbency or financial resources. Our results indicate that even if
winners and losers in close elections appear balanced on observable characteristics, the RD design
should be approached with caution when voters have access to polls. Our findings do not invalidate
the RD design in close elections but rather provide a complementary perspective that helps reconcile
the mixed evidence in the existing literature.

5 Concluding Remarks

We have demonstrated the impact of opinion polls on information acquisition and aggregation in
common-value elections. To this end, we have developed a model that captures interaction between
voters’ decisions and opinion polls. We conclude by discussing extensions and limitations of our
analysis.

5.1 Supermajority Rule

We have so far assumed simple majority rule, but our main results, Theorems 1 and 2, continue to
hold even if a supermajority vote (including unanimity) is required to overturn a default choice.

We consider the same model as before, except that now alternative 1 is chosen if and only if the
vote share āN is at least a given threshold α ∈ (1

2 , 1].11 This model includes the unanimity rule as
the special case of α = 1. As in the main model, each voter’s payoff is 1 if the chosen alternative
is correct and 0 otherwise. We denote this supermajority election with a poll by P̃N , omitting the
prior µ, the unit cost of information λ, and the winning threshold α. We use the same equilibrium
concept as Definition 1.

We extend our main results to the case of the supermajority rule. We relegate the proofs to
Online Appendix C because they are mostly similar to those of the original theorems although we

11This setting is consistent with the case of the simple majority rule, under which there is no tie since N is odd.
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need more intricate analysis and more involved notation. Lemmas 1 and 2 extend to any election
P̃N with any winning threshold α, as shown in Online Appendix C. In particular, an informative
equilibrium exists if and only if Condition 1 is satisfied, and it is unique whenever it exists.

We then extend Theorem 1 to any election P̃N with a winning threshold α ∈ (1
2 , 1]. That is,

the probability of correct choice at the informative equilibrium is e1/λ

1+e1/λ , which is independent of
α as well as of the number of voters N and the prior µ with Condition 1.

Theorem 1′. Theorem 1 holds as is, in any election P̃N .

Next, we extend Theorem 2 to any election P̃N with a winning threshold α ∈ (1
2 , 1]. That is,

as the number of voters grows, the informative equilibrium vote share tends to be closer to α.

Theorem 2′. For each N , let āN be the vote share in the informative equilibrium P ∗
N of any election

P̃N with Condition 1. For each 󰂃 > 0,

lim
N→∞

Pr(|āN − α| < 󰂃) = 1.

5.2 Role of Entropy-Based Costs of Information

We focus on the entropy-based costs of information. This is arguably the most standard specification
in the literature (Sims, 2003; Matějka and McKay, 2015). We exploit this functional form in our
proofs. The biased-logit characterization of equilibria is specific to the entropy-based costs, and
so is Theorem 1. The proof of Theorem 2 also relies on the entropy-based specification. Recall
that the proof idea is that we approximate the probability Pr(|āN − 1

2 | < 󰂃) that the equilibrium
vote share āN is near the winning threshold of 1

2 , using a more tractable form, and then evaluate
the approximation error. Our error evaluation technique relies on a property of the entropy-based
costs. To which extent any of these results may generalize for other specifications of information
costs remains an open question.

Nevertheless, much of the intuition for our results is independent of the entropy specifica-
tion. While it is an open question whether the perfect balance between Condorcet’s optimism and
Downs’s pessimism (Theorem 1) would remain true under different cost functions, the idea that
information sharing through polls helps alleviate the free rider problem appears to be generally
true. The full role that the entropy costs play here remains an important and potentially intriguing
avenue for future research.

5.3 Information as Public Goods

A striking implication of our model is that the probability of majority vote making the correct
choice in the presence of polls is independent of the number of voters (Theorem 1). To understand
the result and the potential difficulty with generalizing it, an analogy with voluntary provision of
a public good might be useful. Information once shared is both non-rivalrous and non-excludable,
and information acquisition in our environment can be viewed as a voluntary contribution to its
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provision. As in the standard voluntary provision game (e.g., Bergstrom, Blume, and Varian, 1986)
the amount of the public good provided is determined by equating individual marginal benefits
and marginal costs of information, and the additively separable structure of information costs is
reminiscent of the quasi-linear utilities that obviate income effects. In the absence of income effects,
the equilibrium amount of a voluntarily provided public good would likewise be independent of the
number of agents.

A major difference from the classic voluntary provision game is that in our voting model,
the benefit from acquiring information is discounted by the probability of being pivotal. If polling
information were free, voters would only acquire information when they are pivotal, which completes
the public-good analogy. Since information about polls is costly in our model, it may in general not
be clear how equilibrium costs of information about the polls and the state interact. This makes
us suspect that the full neutrality we observe here may depend on the choice of the information
cost specification.

5.4 Opinion Polls Based on Random Sampling

In this paper, an opinion poll refers to a complete census that aggregates all voters’ intentions. In
practice, an opinion poll is based on a subset consisting of randomly sampled voters. Sampling error
would introduce additional noise into voters’ information, but as long as a sufficient number of voters
are randomly sampled, voters should be able to access essentially the same information. Hence, we
believe that in such a model, most of our results would still obtain. Explicitly modeling sampling,
however, may open additional questions about the interaction between information acquisition and
the design of opinion polls, such as considerations of sampling size, content and dissemination of
polls, or how costly learning about them should be. These questions, which have not, to the best of
our knowledge, been addressed in the literature, would link our work to the research on information
design (e.g., Bergemann and Morris, 2019).

A Appendix

A.1 Lemma 1

Our base game is a common-interest game and thus a potential game (Monderer and Shapley,
1996). Indeed, the payoff function u is the potential. Applying Denti’s (2023) Corollary 1 to our
setting, we have the following lemma:

Lemma A. Every symmetric equilibrium P ∗
N of an election with opinion polls PN is such that for
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some p∗
N ∈ [0, 1] and for each a = (a1, . . . , aN ) and each θ,

P ∗
N (a1, . . . , aN | θ) =

exp
󰀕

u(āN , θ)
λ

󰀖 N󰁜

i=1

󰀓
p∗

N1{ai = 1} + (1 − p∗
N )1{ai = 0}

󰀔

󰁛

a′∈{0,1}N

exp
󰀕

u(ā′
N , θ)
λ

󰀖 N󰁜

i=1

󰀓
p∗

N1{a′
i = 1} + (1 − p∗

N )1{a′
i = 0}

󰀔 ,

where (p∗
N , . . . , p∗

N ) is a symmetric pure-strategy Nash equilibrium of the normal-form game such
that all players i = 1, . . . , N have the same action space [0, 1] and the same payoff function

U(p1, . . . , pN ) =
󰁛

θ

µ(θ) ln

󰀳

󰁃
󰁛

a′∈{0,1}N

exp
󰀕

u(ā′
N , θ)
λ

󰀖 N󰁜

i=1

󰀓
pi1{a′

i = 1} + (1 − pi)1{a′
i = 0}

󰀔
󰀴

󰁄.

The biased logit formula of (2) is immediate from this lemma because Pr(āN = k
N | θ) =

󰀃N
k

󰀄
P ∗

N (a1, . . . , aN | θ), and the denominator of P ∗
N (a1, . . . , aN | θ) is equal to ZN (p, θ) by the

definition of (3).
To prove Lemma 1, it suffices to show that any symmetric pure-strategy Nash equilibrium

(p∗
N , . . . , p∗

N ) of the normal-form game of Lemma A is either p∗
N ∈ {0, 1} or a solution to (4). At

the symmetric Nash equilibrium, it must be that p∗
N ∈ argmaxpi

U(pi, p∗
N , . . . , p∗

N ). Since this is
immediate if p∗

N ∈ {0, 1}, let p∗
N ∈ (0, 1). In this interior case, pi = p∗

N satisfies the first-order
condition, ∂U

∂pi
(p∗

N , p∗
N , . . . , p∗

N ) = 0. It is also sufficient since U(pi, p∗
N , . . . , p∗

N ) is strictly concave
in pi (Caplin et al., 2019, p. 1066). We write the first-order condition as

󰁛

θ

µ(θ) ·

2n󰁛

k=0

󰀣
2n

k

󰀤󰀥

exp
󰀣

u(k+1
N , θ)
λ

󰀤

− exp
󰀣

u( k
N , θ)
λ

󰀤󰀦

(p∗
N )k(1 − p∗

N )2n−k

N󰁛

k=0

󰀣
N

k

󰀤

exp
󰀣

u( k
N , θ)
λ

󰀤

(p∗
N )k(1 − p∗

N )N−k

= 0. (9)

The denominator is ZN (p∗
N , θ) by the definition of (3). In the numerator, if k ∕= n then the square

bracket is zero since u(k+1
N , θ) = u( k

N , θ), while if k = n then the square bracket is e1/λ − 1 when
θ = 1 and 1 − e1/λ when θ = 0. Substituting them into (9), we have

µ(1)
ZN (p∗

N , 1)

󰀣
2n

n

󰀤

(p∗
N )n(1 − p∗

N )n(e1/λ − 1) + µ(0)
ZN (p∗

N , 0)

󰀣
2n

n

󰀤

(p∗
N )n(1 − p∗

N )n(1 − e1/λ) = 0,

which is equivalent to (4). Hence, (p∗
N , . . . , p∗

N ) is a Nash equilibrium if and only if p∗
N is a solution

to (4).
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A.2 Lemma 2

Step 1 We define the function WN : [0, 1] × Θ → R as follows:

WN (p, 1) =
N󰁛

k=n+1

󰀣
N

k

󰀤

pk(1 − p)N−k,

WN (p, 0) =
n󰁛

k=0

󰀣
N

k

󰀤

pk(1 − p)N−k.

(10)

Note that WN (p, 1) + WN (p, 0) = 1 by the binomial theorem. Note that WN (p, 1) is strictly
increasing in p and WN (p, 0) is strictly decreasing in p, as can be shown by taking derivatives.
Then, we rewrite ZN , as defined in (3), as

ZN (p, 1) = WN (p, 0) + e1/λWN (p, 1),

ZN (p, 0) = e1/λWN (p, 0) + WN (p, 1).
(11)

Note that ZN (p,1)
ZN (p,0) is continuous and strictly increasing in p, because ZN (p, 1) is strictly increasing

in p and ZN (p, 0) strictly decreasing in p.12

Step 2 By Lemma 1, it suffices to show that (4) has a unique solution if and only if Condition 1
holds. Note that WN (1, 1) = WN (0, 0) = 1 and WN (0, 1) = WN (1, 0) = 0 by substitution. By (11),

ZN (0, 1)
ZN (0, 0) = e−1/λ,

ZN (1, 1)
ZN (1, 0) = e1/λ.

Hence, if Condition 1 is satisfied, ZN (0,1)
ZN (0,0) < µ(1)

µ(0) < ZN (1,1)
ZN (1,0) . Since ZN (p,1)

ZN (p,0) is continuous and strictly
increasing in p, (4) has a unique solution p∗

N ∈ (0, 1). If Condition 1 is not satisfied, we have either
ZN (0,1)
ZN (0,0) = e−1/λ ≥ µ(1)

µ(0) or ZN (1,1)
ZN (1,0) = e1/λ ≤ µ(1)

µ(0) . In either case, (4) has no solution in (0, 1).

A.3 Theorem 1

By (2), the probability of choosing alternative 1 at state θ = 1 is

Pr
󰀕

āN >
1
2 | θ = 1

󰀖
=

N󰁛

k=n+1
Pr

󰀕
āN = k

N
| θ = 1

󰀖

= 1
ZN (p∗

N , 1)

N󰁛

k=n+1

󰀣
N

k

󰀤

exp
󰀣

u( k
N , 1)
λ

󰀤

(p∗
N )k(1 − p∗

N )N−k.

12To see that ZN (p, 1) is strictly increasing in p, note that ZN (p, 1) = 1 + (e1/λ − 1)WN (p, 1) since WN (p, 0) +
WN (p, 1) = 1 and that WN (p, 1) is strictly increasing in p. Similarly, we see that ZN (p, 0) is strictly decreasing in p.
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Since u( k
N , 1) = 1 for all k = n + 1, . . . , N , we have, by (10) and (11),

Pr
󰀕

āN >
1
2 | θ = 1

󰀖
= e1/λWN (p∗

N , 1)
WN (p∗

N , 0) + e1/λWN (p∗
N , 1)

.

By (11), we rewrite (4) as

WN (p∗
N , 0) + e1/λWN (p∗

N , 1)
e1/λWN (p∗

N , 0) + WN (p∗
N , 1)

= µ(1)
µ(0) .

Equivalently, WN (p∗
N ,1)

WN (p∗
N ,0) = e1/λµ(1)−µ(0)

e1/λµ(0)−µ(1) . Hence,

Pr
󰀕

āN >
1
2 | θ = 1

󰀖
=

e1/λ − µ(0)
µ(1)

e1/λ − e−1/λ

Similarly,

Pr
󰀕

āN <
1
2 | θ = 0

󰀖
=

e1/λ − µ(1)
µ(0)

e1/λ − e−1/λ
.

By substitution, we obtain the desired result:

Pr(u(āN , θ) = 1) = µ(1) Pr
󰀕

āN >
1
2 | θ = 1

󰀖
+ µ(0) Pr

󰀕
āN <

1
2 | θ = 0

󰀖
= e1/λ

1 + e1/λ
.

Lastly, we show that e1/λ

1+e1/λ > max{µ(1), µ(0)} if the informative equilibrium exists. Since
the existence is equivalent to Condition 1 (Lemma 2), it suffices to derive the inequality under
Condition 1. This is verified by simple algebra. Indeed, e−1/λ < µ(1)

µ(0) < e1/λ (Condition 1) is
equivalent to e−1/λ

1+e−1/λ < µ(1) < e1/λ

1+e1/λ , which is equivalent to the desired inequality.

A.4 Lemma 3

To prove Lemma 3, it suffices to show that for any small 󰂃 > 0, if N is sufficiently large,

ZN (1
2 − 󰂃, 1)

ZN (1
2 − 󰂃, 0)

<
µ(1)
µ(0) <

ZN (1
2 + 󰂃, 1)

ZN (1
2 + 󰂃, 0)

. (12)

To see that (12) is sufficient, we note that ZN (p,1)
ZN (p,0) is continuous and strictly increasing in p. If (12)

is true then p∗
N ∈ (1

2 − 󰂃, 1
2 + 󰂃), where p∗

N is a solution to (4).
We show auxiliary inequalities. For any small δ > 0, there is an Nδ such that for any N > Nδ,

WN (1
2 + 󰂃, 1) > 1 − δ, WN (1

2 + 󰂃, 0) < δ,

WN (1
2 − 󰂃, 0) > 1 − δ, WN (1

2 − 󰂃, 1) < δ,
(13)

where WN is defined in (10). To see these inequalities, let w1, . . . , wN be i.i.d. Bernoulli random
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variables that take values 1 and 0 with probabilities 1
2 +󰂃 and 1

2 −󰂃 respectively. Then, WN (1
2 +󰂃, 1)

and WN (1
2 + 󰂃, 0) are the probabilities that the sample average 1

N

󰁓N
i=1 wi is, respectively, strictly

greater than 1
2 and strictly less than 1

2 . By the law of large numbers, there is an N ′
δ such that for

any N > N ′
δ, we have WN (1

2 + 󰂃, 1) > 1− δ and WN (1
2 + 󰂃, 0) < δ. To see the other two inequalities,

let w′
1, . . . , w′

N be i.i.d. Bernoulli random variables that take values 1 and 0 with probabilities 1
2 − 󰂃

and 1
2 + 󰂃 respectively. By the same argument, there is an N ′′

δ such that for any N > N ′′
δ , we have

WN (1
2 − 󰂃, 0) > 1 − δ and WN (1

2 − 󰂃, 1) < δ. Lastly, let Nδ = max{N ′
δ, N ′′

δ }.
We show another inequality. Under Condition 1, there is a small δ > 0 such that

1 + e1/λδ

e1/λ(1 − δ)
<

µ(1)
µ(0) <

e1/λ(1 − δ)
e1/λδ + 1

. (14)

To prove this inequality, note that for a small enough δ, we have the LHS and RHS arbitrarily close
to e−1/λ and e1/λ, respectively. Since e−1/λ < µ(1)

µ(0) < e1/λ (Condition 1), we obtain (14).
Now we prove (12). For any N > Nδ,

ZN (1
2 + 󰂃, 1)

ZN (1
2 + 󰂃, 0)

=
WN (1

2 + 󰂃, 0) + e1/λWN (1
2 + 󰂃, 1)

e1/λWN (1
2 + 󰂃, 0) + WN (1

2 + 󰂃, 1)
>

e1/λ(1 − δ)
e1/λδ + 1

>
µ(1)
µ(0) ,

where the equality is by (11), the first inequality by (13), and the second inequality by (14). Also,

ZN (1
2 − 󰂃, 1)

ZN (1
2 − 󰂃, 0)

=
WN (1

2 − 󰂃, 0) + e1/λWN (1
2 − 󰂃, 1)

e1/λWN (1
2 − 󰂃, 0) + WN (1

2 − 󰂃, 1)
<

1 + e1/λδ

e1/λ(1 − δ)
<

µ(1)
µ(0) ,

where the equality is by (11), the first inequality by (13), and the second inequality by (14). Thus,
we have (12), which completes the proof.

A.5 Theorem 2

Fix any θ and any l, h such that 0 ≤ l < h ≤ 1. By Lemma 1,

Pr(āN ∈ [l, h] | θ) = ZN ([l, h], θ)
ZN ([0, 1], θ) ,

where for any interval T ⊂ [0, 1],

ZN (T, θ) ≡
󰁛

k: k
N

∈T

󰀣
N

k

󰀤

exp
󰀣

u( k
N , θ)
λ

󰀤

(p∗
N )k(1 − p∗

N )N−k.

Here,
󰁓

k: k
N

∈T runs over all k = 0, . . . , N such that k
N ∈ T . Hence,

1
N

ln Pr(āN ∈ [l, h] | θ) = 1
N

ln ZN ([l, h], θ) − 1
N

ln ZN ([0, 1], θ). (15)
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Step 1 Fix any δ > 0. There exists an N1 such that for any N ≥ N1 and any k,

−Nδ <
u( k

N , θ)
λ

< Nδ, (16)

which is immediate for u( k
N , θ) = 0, 1. By Lemma 3, there exists an N2 such that for any N ≥ N2,

| ln p∗
N − ln 1

2 | < δ and | ln(1 − p∗
N ) − ln 1

2 | < δ. By the triangle inequality,
󰀏󰀏󰀏󰀏k ln p∗

N + (N − k) ln(1 − p∗
N ) − N ln 1

2

󰀏󰀏󰀏󰀏 ≤ k

󰀏󰀏󰀏󰀏ln p∗
N − ln 1

2

󰀏󰀏󰀏󰀏 + (N − k)
󰀏󰀏󰀏󰀏ln(1 − p∗

N ) − ln 1
2

󰀏󰀏󰀏󰀏 < Nδ.

It follows that for any N ≥ N2 and any k,

e−Nδ2−N < (p∗
N )k(1 − p∗

N )N−k < eNδ2−N . (17)

Evaluating ZN ([l, h], θ) with (16) and (17), we obtain that for any N ≥ max{N1, N2},
󰀏󰀏󰀏󰀏󰀏󰀏󰀏

1
N

ln ZN ([l, h], θ) − 1
N

ln
󰁛

k: k
N

∈[l,h]

󰀣
N

k

󰀤

2−N

󰀏󰀏󰀏󰀏󰀏󰀏󰀏
< 2δ. (18)

Step 2 Note that
󰁓

k: k
N

∈[l,h]
󰀃N

k

󰀄
2−N is the probability that the sample average of N i.i.d. sym-

metric Bernoulli random variables, which take values 1 and 0 with equal probabilities 1
2 , is in [l, h].

By Sanov’s theorem (Cover and Thomas, 2006, Theorem 11.4.1), there exists an N3 such that for
any N ≥ N3,

󰀏󰀏󰀏󰀏󰀏󰀏󰀏

1
N

ln
󰁛

k: k
N

∈[l,h]

󰀣
N

k

󰀤

2−N + min
t∈[l,h]

󰁱
DKL

󰀓
B(t) 󰀂 B(1

2)
󰀔󰁲

󰀏󰀏󰀏󰀏󰀏󰀏󰀏
< δ, (19)

where B(t) is the Bernoulli distribution that assigns to values 1 and 0 probabilities t and 1 − t, and
DKL(B(t) 󰀂 B(1

2)) is the Kullback–Leibler divergence of B(t) from B(1
2), which is defined as

DKL
󰀓
B(t) 󰀂 B(1

2)
󰀔

≡ t ln
󰀕

t

1/2

󰀖
+ (1 − t) ln

󰀕1 − t

1/2

󰀖
,

where 0 ln(0) = 0 by convention. In the rest of the proof, we will use the non-negativity property:
DKL(B(t) 󰀂 B(1

2)) ≥ 0 for all t ∈ [0, 1], with equality if and only if t = 1
2 (Cover and Thomas, 2006,

Theorem 2.6.3). The minimum exists in (19) since DKL(B(t) 󰀂 B(1
2)) is continuous in t and [l, h] is

compact.

Step 3 By the triangle inequality with (18) and (19), for any N ≥ max{N1, N2, N3},
󰀏󰀏󰀏󰀏󰀏

1
N

ln ZN ([l, h], θ) + min
t∈[l,h]

󰁱
DKL

󰀓
B(t) 󰀂 B(1

2)
󰀔󰁲󰀏󰀏󰀏󰀏󰀏 < 3δ.
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Since the choice of δ > 0 is arbitrary,

lim
N→∞

1
N

ln ZN ([l, h], θ) = − min
t∈[l,h]

󰁱
DKL

󰀓
B(t) 󰀂 B(1

2)
󰀔󰁲

.

In particular,

lim
N→∞

1
N

ln ZN ([0, 1], θ) = − min
t∈[0,1]

󰁱
DKL

󰀓
B(t) 󰀂 B(1

2)
󰀔󰁲

= 0,

where we use the non-negativity of the Kullback–Leibler divergence.
By (15), we conclude that for any θ and any l, h such that 0 ≤ l < h ≤ 1,

lim
N→∞

1
N

ln Pr(āN ∈ [l, h] | θ) = − min
t∈[l,h]

󰁱
DKL

󰀓
B(t) 󰀂 B(1

2)
󰀔󰁲

. (20)

Step 4 Fix any 󰂃 > 0. By (20),

lim
N→∞

1
N

ln Pr
󰀕

āN ∈
󰀗
0,

1
2 − 󰂃

󰀘
| θ

󰀖
= − min

t∈[0, 1
2 −󰂃]

󰁱
DKL

󰀓
B(t) 󰀂 B(1

2)
󰀔󰁲

< 0,

where the inequality is by the non-negativity of the Kullback–Leibler divergence. Hence,

lim
N→∞

Pr
󰀕

āN ∈
󰀗
0,

1
2 − 󰂃

󰀘
| θ

󰀖
= 0.

Similarly,

lim
N→∞

Pr
󰀕

āN ∈
󰀗1

2 + 󰂃, 1
󰀘

| θ

󰀖
= 0.

It then follows that

lim
N→∞

Pr
󰀕󰀏󰀏󰀏󰀏āN − 1

2

󰀏󰀏󰀏󰀏 < 󰂃 | θ

󰀖
= 1.

Since this is true for each θ, we have limN→∞ Pr(|āN − 1
2 | < 󰂃) = 1.

A.6 Lemma 4

This lemma is immediate from the biased-logit formula, which is derived by Matějka and McKay
(2015, Theorem 1) and Caplin et al. (2019, Proposition 1).

A.7 Lemma 5

Note that as N = 2n + 1 → ∞,

0 ≤ ΠN (θ) =
󰀣

2n

n

󰀤

(Q∗
N (1 | θ))n(Q∗

N (0 | θ))n ≤
󰀣

2n

n

󰀤
1

22n
→ 0.
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By Lemma 4, limN→∞ |Q∗
N (1 | 1) − q∗

N | = 0 and limN→∞ |Q∗
N (1 | 0) − q∗

N | = 0.
Consider the case of state θ = 1, as the case of state θ = 0 is analogous. Fix any 󰂃 > 0.

There exists an N1 such that for each N > N1, |Q∗
N (1 | 1) − q∗

N | < 󰂃
3 . Since limN→∞ q∗

N = q∗
∞

by assumption, there exists an N2 such that for each N > N2, |q∗
N − q∗

∞| < 󰂃
3 . For any N >

max{N1, N2},

|Q∗
N (1 | 1) − q∗

∞| ≤ |Q∗
N (1 | 1) − q∗

N | + |q∗
N − q∗

∞| <
2󰂃

3 .

Voters’ actions b1, b2, . . . are conditionally independent given state θ = 1. By the law of large
numbers, for any δ > 0, there exists an N3 such that for any N > N3,

Pr
󰀕

|b̄N − Q∗
N (1 | 1)| <

󰂃

3 | θ = 1
󰀖

> 1 − δ.

Since |Q∗
N (1 | 1)−q∗

∞| < 2󰂃
3 , we have Pr(|b̄N −q∗

∞| < 󰂃 | θ = 1) > 1−δ for any N > max{N1, N2, N3}.

A.8 Lemma 6

We focus on the case of q∗
∞ = 1

2 since we have discussed the case of q∗
∞ ∕= 1

2 in the main text. For
each N , there exist t1

N , t0
N ∈ [−1

2 , 1
2 ] such that Q∗

N (1 | 1) = 1
2 + t1

N and Q∗
N (1 | 0) = 1

2 − t0
N . For

each N , there exists tN ∈ [−1
2 , 1

2 ] such that q∗
N = 1

2 + tN . Since q∗
N is the unconditional probability

of voting for alternative 1 (Lemma 4), it must be that q∗
N = µ(1)Q∗

N (1 | 1) + µ(0)Q∗
N (1 | 0). Hence,

tN = µ(1)t1
N − µ(0)t0

N . (21)

Since q∗
N → 1

2 as N → ∞, it follows that t1
N → 0, t0

N → 0, and tN → 0.

Step 1 Consider the unconditional probability of correct choice. Note that

Pr(u(b̄N , θ) = 1) = µ(1) Pr
󰀕

b̄N >
1
2 | θ = 1

󰀖
+ µ(0) Pr

󰀕
b̄N <

1
2 | θ = 0

󰀖
. (22)

We consider Pr(b̄N > 1
2 | θ = 1) in (22). Given state θ = 1, the equilibrium actions b1, . . . , bN

are i.i.d. Bernoulli random variables that take values 1 and 0 with probabilities 1
2 + t1

N and 1
2 − t1

N

respectively. We have the mean µ1
N ≡ 1

2 + t1
N and the variance (σ1

N )2 ≡ 1
4 − (t1

N )2. Hence,

Pr
󰀕

b̄N >
1
2 | θ = 1

󰀖
= 1 − Pr

󰀣
b̄N − µ1

N

σ1
N /

√
N

≤ −
√

Nt1
N

σ1
N

| θ = 1
󰀤

.

By Berry–Esseen theorem (Durrett, 2010, Theorem 3.4.9),
󰀏󰀏󰀏󰀏󰀏Pr

󰀣
b̄N − µ1

N

σ1
N /

√
N

≤ −
√

Nt1
N

σ1
N

| θ = 1
󰀤

− Φ
󰀣

−
√

Nt1
N

σ1
N

󰀤󰀏󰀏󰀏󰀏󰀏 ≤ O

󰀣
E[|bi − µ1

N |3 | θ = 1]√
N

󰀤

,
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where Φ is the standard normal cdf. Since E[|bi − µ1
N |3 | θ = 1] ≤ 1

8 , the RHS vanishes as N → ∞.
Thus,

lim
N→∞

󰀏󰀏󰀏󰀏󰀏Pr
󰀣

b̄N − µ1
N

σ1
N /

√
N

≤ −
√

Nt1
N

σ1
N

| θ = 1
󰀤

− Φ
󰀣

−
√

Nt1
N

σ1
N

󰀤󰀏󰀏󰀏󰀏󰀏 = 0.

Hence,

lim
N→∞

󰀏󰀏󰀏󰀏󰀏Pr
󰀕

b̄N >
1
2 | θ = 1

󰀖
− Φ

󰀣√
Nt1

N

σ1
N

󰀤󰀏󰀏󰀏󰀏󰀏 = 0. (23)

Next, we consider Pr(b̄N < 1
2 | θ = 0) in (22). Given state θ = 0, the equilibrium actions

b1, . . . , bN are i.i.d. Bernoulli random variables that take values 1 and 0 with probabilities 1
2 − t0

N

and 1
2 + t0

N respectively. We have the mean µ0
N = 1

2 − t0
N and the variance (σ0

N )2 = 1
4 − (t0

N )2. By
the same argument as above,

lim
N→∞

󰀏󰀏󰀏󰀏󰀏Pr
󰀕

b̄N <
1
2 | θ = 0

󰀖
− Φ

󰀣√
Nt0

N

σ0
N

󰀤󰀏󰀏󰀏󰀏󰀏 = 0. (24)

Step 2 Assume that t1
N ∕= 0 and t0

N ∕= 0. (The other cases are trivial, and we will discuss them in
footnote 15.) Rewrite the biased-logit formula (7) as follows:13

λ ln Q∗
N (1 | 1)

Q∗
N (0 | 1) − λ ln q∗

N

1 − q∗
N

=
󰀣

2n

n

󰀤

(Q∗
N (1 | 1))n(Q∗

N (0 | 1))n,

λ ln Q∗
N (0 | 0)

Q∗
N (1 | 0) − λ ln 1 − q∗

N

q∗
N

=
󰀣

2n

n

󰀤

(Q∗
N (1 | 0))n(Q∗

N (0 | 0))n,

where we have q∗
N ∈ (0, 1) for any large N because limN→∞ q∗

N = 1
2 by assumption. Recall that

Q∗
N (1 | 1) = 1

2 + t1
N , Q∗

N (1 | 0) = 1
2 − t0

N , and q∗
N = 1

2 + tN . Using the function f : (−1
2 , 1

2) → R
defined by f(t) = ln

󰀓
1/2+t
1/2−t

󰀔
, we rewrite the above equations as

λf
󰀃
t1
N

󰀄
− λf

󰀃
tN

󰀄
=

󰀣
2n

n

󰀤󰀕1
2 + t1

N

󰀖n󰀕1
2 − t1

N

󰀖n

,

λf
󰀃
t0
N

󰀄
+ λf

󰀃
tN

󰀄
=

󰀣
2n

n

󰀤󰀕1
2 + t0

N

󰀖n󰀕1
2 − t0

N

󰀖n

.

By the mean value theorem, there is some τ θ
N between 0 and tθ

N such that f(tθ
N ) = tθ

N f ′(τ θ
N ).

Similarly, there is some τN between 0 and tN such that f(tN ) = tN f ′(τN ). Since f ′(t) = (1
4 − t2)−1,

13Here is how we derive these equations. We only consider the case of state θ = 1, as the case of state θ = 0 is
analogous. Since Q∗

N (0 | 1) = 1 − Q∗
N (1 | 1), it follows that Q∗

N (1|1)
Q∗

N
(0|1) = q∗

N
1−q∗

N
eΠN (1)/λ. Taking the logarithm on both

sides, we obtain the desired equations.
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we rearrange the terms to obtain that

λT 1
N

1
4 − (τ1

N )2 − λTN
1
4 − (τN )2 =

󰀣
2n

n

󰀤√
n

22n

󰁶
N

n

󰀣

1 − (2T 1
N )2

N

󰀤n

, (25)

λT 0
N

1
4 − (τ0

N )2 + λTN
1
4 − (τN )2 =

󰀣
2n

n

󰀤√
n

22n

󰁶
N

n

󰀣

1 − (2T 0
N )2

N

󰀤n

, (26)

where we denote T θ
N ≡

√
Ntθ

N and TN ≡
√

NtN for brevity.
As N → ∞, we have τ θ

N → 0 and τN → 0 because tθ
N → 0 and tN → 0.

Step 3 We take the limit of (25) and (26). Consider any subsequence of the sequence {N} such
that limN→∞ T 1

N = T 1 ∈ R and limN→∞ T 0
N = T 0 ∈ R. We consider other subsequences in Step 4.

By (21), the subsequence {TN } converges to T such that

T = µ(1)T 1 − µ(0)T 0. (27)

Take the limit of (25) and (26) along the subsequence. Then,

lim
N→∞

LHS of (25) = 4λ(T 1 − T ),

lim
N→∞

LHS of (26) = 4λ(T 0 + T ).
(28)

By Stirling’s formula,

lim
N→∞

󰀣
2n

n

󰀤√
n

22n
= 1√

π
.

For N = 2n + 1, limN→∞
󰁳

N/n =
√

2 and14

lim
N→∞

󰀣

1 − (2T θ
N )2

N

󰀤n

= exp
󰀣

−(2T θ)2

2

󰀤

.

Hence,

lim
N→∞

RHS of (25) = 2φ(2T 1),

lim
N→∞

RHS of (26) = 2φ(2T 0),
(29)

where φ is the standard normal pdf. By (27), (28), and (29),

λµ(0)(2T 1 + 2T 0) = φ(2T 1),

λµ(1)(2T 1 + 2T 0) = φ(2T 0).
(30)

14If limn→∞ cn = c then limn→∞(1 + cn/n)n = ec (Durrett, 2010, Theorem 3.4.2).
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By (23) and (24),

lim
N→∞

Pr
󰀕

b̄N >
1
2 | θ = 1

󰀖
= lim

N→∞
Φ

󰀣
T 1

N

σ1
N

󰀤

= Φ(2T 1),

lim
N→∞

Pr
󰀕

b̄N <
1
2 | θ = 0

󰀖
= lim

N→∞
Φ

󰀣
T 0

N

σ0
N

󰀤

= Φ(2T 0),

where Φ is continuous, and T θ
N → T θ and σθ

N → 1
2 for each θ = 0, 1. Now we take the limit N → ∞

in (22). Then,

lim
N→∞

Pr(u(b̄N , θ) = 1) = µ(1)Φ(2T 1) + µ(0)Φ(2T 0).

Letting t1 = 2T 1 and t0 = 2T 0 in this equation and equations (30), we have the desired result.15

Step 4 Consider any subsequence of the sequence {N} along which either {T 1
N } or {T 0

N } or both
diverge. There are three cases to consider. First, suppose that along the subsecquence, one of
{T 1

N } and {T 0
N } converges (to a finite value) and the other one diverges to ±∞. Assume, without

loss, that T 1
N → T1 ∈ R but T 0

N → ±∞. By (21), {TN } → ∓∞. Then, the LHS of (25) diverges
to ±∞, but the RHS converges to finite values, a contradiction. Second, suppose that along the
subsecquence, both {T 1

N } and {T 0
N } diverge to +∞. By (21), {TN } may converge or diverge. If

{TN } converges then on both (25) and (26), the LHS diverge to +∞ but the RHS converge to
finite values, a contradiction. If {TN } diverges then the LHS on either (25) or (26) diverges but
the RHS on both converge, a contradiction. Third, suppose that along the subsecquence, one of
{T 1

N } and {T 0
N } diverges to +∞ and the other diverges to −∞. If T 1

N → +∞ and T 0
N → −∞ then

Φ(T 1
N /σ1

N ) → 1 and Φ(T 0
N /σ0

N ) → 0 in (23) and (24), which implies that Pr(u(b̄N , θ) = 1) → µ(1)
in (22). Similarly, if T 1

N → −∞ and T 0
N → +∞ then Pr(u(b̄N , θ) = 1) → µ(0).

A.9 Proposition 1

In an election with a poll, the probability of correct choice at the informative equilibrium is e1/λ

1+e1/λ

for any N by Theorem 1. In an election without a poll, the probability of correct choice at any
(informative or uninformative) equilibrium converges to either µ(1), µ(0), or µ(1)Φ(t1) + µ(0)Φ(t0)
as N → ∞ by Lemma 6. It then suffices to show that there exists a small 󰂃 > 0 such that for any
λ > 0 and any µ such that |µ(1) − 1

2 | < 󰂃,

e1/λ

1 + e1/λ
> max

󰁱
µ(1), µ(0), µ(1)Φ(t1) + µ(0)Φ(t0)

󰁲
, (31)

15In this analysis, we assume that t1
N ∕= 0 and t0

N ∕= 0. In this footnote, we discuss the other cases. If t1
N = 0 for

all sufficiently large N then (23) is reduced to limN→∞ Pr(b̄N > 1
2 | θ = 1) = 1

2 . This case is included in the desired
result (8) since t1 = 2 limN→∞

√
Nt1

N = 0. Similarly, if t0
N = 0 for all sufficiently large N then (24) is reduced to

limN→∞ Pr(b̄N < 1
2 | θ = 0) = 1

2 , and this case is included in the desired result (8). Lastly, if tθ
N = 0 for infinitely

many N but for any N̄ , there exists an N > N̄ such that tθ
N ∕= 0 then we can use the same argument as in the proof

by taking a subsequence along which for all N , tθ
N ∕= 0.
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where (t1, t0) is a solution to λµ(0)(t1 + t0) = φ(t1) and λµ(1)(t1 + t0) = φ(t0).
Since (t1, t0) is continuous in µ, it follows that µ(1)Φ(t1) + µ(0)Φ(t0) is continuous in µ. To

show the above result, it suffices to prove the result for the symmetric prior µ, µ(1) = 1
2 .

Lemma B. For each N , any election QN with the symmetric prior µ has a symmetric equilibrium
Q∗

N such that q∗
N = 1

2 . For the sequence of these equilibria {Q∗
N }N , the equilibrium probability of

correct choice converges to

lim
N→∞

Pr(u(b̄N , θ) = 1) = Φ(tλ),

where tλ > 0 is the unique solution to equation λt = φ(t).

Proof. Under the symmetric prior µ, we have a symmetric equilibrium Q∗
N (1 | 1) = Q∗

N (0 | 0) by
Lemma 4. Then, q∗

N = µ(1)Q∗
N (1 | 1) + µ(0)Q∗

N (1 | 0) = 1
2 . The latter half of this lemma follows

from Lemma 6. We use the same notation. By symmetry, Q∗
N (1 | 1) = Q∗

N (0 | 0) > 1
2 and thus

t1
N = t0

N > 0 and T 1
N = T 0

N . Since their limits coincide (i.e., T 1 = T 0, where T 1 = limN→∞ T 1
N and

T 0 = limN→∞ T 0
N ), we have t ≡ t1 = t2, where t1 = 2T 1 and t2 = 2T 0. Substituting it into Lemma

6, we have the limit, limN→∞ Pr(u(b̄N , θ) = 1) = Φ(t), and the constraint, λt = φ(t). 󰃈

By Lemma B, if the prior µ is symmetric, (31) is equivalent to e1/λ

1+e1/λ > max{1
2 , Φ(tλ)}. Since

Φ(t) > 1
2 for any t > 0, this is equivalent to e1/λ

1+e1/λ > Φ(tλ). Hence, the proof is completed by the
following lemma:

Lemma C. For any λ > 0, e1/λ

1+e1/λ > Φ(tλ).

Proof. See Online Appendix B. 󰃈
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