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B Lemma C

In this proof, we write x = 1/λ. Define a function ψ : R+ → R by

ψ(t) ≡ t − xφ(t).

By definition, tλ is the unique solution to equation ψ(t) = 0.
First, we consider the case of x ∈ (0, 3). Note that x√

2π
≥ tλ since ψ is strictly increasing and

ψ( x√
2π

) > 0. To show that ex

1+ex > Φ(tλ), it suffices to show that ex

1+ex > Φ( x√
2π

). Define a function
l : (0, 3] → R as

l(x) =






x
2π + 1

2 if x ∈ (0, 2)
x

2π − 2
2π + Φ( 2

2π ) if x ∈ [2, 3].

This function l is plotted in Figure 1. It suffices to show that

ex

1 + ex
> l(x) > Φ


x√
2π


.

We prove these inequalities. To show that ex

1+ex > l(x), it suffices to show that g(x) ≡ ex

1+ex − l(x) >

0. Since g is strictly convex and since g(0) = 0 and g(2−), g(2), g(3) > 0, it follows that g(x) > 0 for
any x ∈ (0, 3]. To show that l(x) > Φ( x√

2π
), it suffices to show that h(x) ≡ l(x)−Φ( x√

2π
). Note that

h′(x) = 1
2π − 1√

2π
φ( x√

2π
) > 0 for any x ∕= 2, where φ( x√

2π
) < φ(0) = 1√

2π
. Since h(0) = h(2) = 0 by

construction, h(x) > 0 for any x ∈ (0, 3). Hence, ex

1+ex > Φ(tλ) for any x ∈ (0, 3).
Second, we consider the case of x ∈ [3, ∞). Note that

√
2 ln x ≥ tλ since ψ is strictly increasing

and ψ(
√

2 ln x) > 0. To show that ex

1+ex > Φ(tλ), it suffices to show that ex

1+ex > Φ(
√

2 ln x).
Let Ψ(t) ≡ 1 − φ(t)(t−1 − t−3), and then we have Ψ(t) > Φ(t) for any t > 0.1 This is because
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1Note the following asymptotic expansion: Φ(t) = 1 − φ(t)

∞
n=0(−1)n(2n − 1)!!t−2n−1, where (2n − 1)!! is the

double factorial of 2n − 1. We obtain Ψ by truncating the expansion at n = 1.
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Figure 1: the function l(x)

d
dt(Ψ(t) − Φ(t)) = −3φ(t)t−4 < 0 and limt→∞ Ψ(t) − Φ(t) = 0. To show that ex

1+ex > Φ(tλ), it
suffices to prove that ex

1+ex > Ψ(
√

2 ln x). By algebra, it is equivalent to

(2 ln x − 1)2

(2 ln x)3 >
2πx2

(1 + ex)2 .

Since

(2 ln x − 1)2

(2 ln x)3 = (1 − 1/(2 ln x))2

2 ln x
≥ (1 − 1/(2 ln 3))2

2 ln x
,

it suffices to show that

(1 − 1/(2 ln 3))2

2 ln x
>

2πx2

(1 + ex)2 .

By Taylor expansion, ex ≥ e3(1 + (x − 3) + (x − 3)2/2). Since e3 > 20, it suffices to show that

(1 − 1/(2 ln 3))2

2 ln x
>

2πx2

(1 + 20(1 + (x − 3) + (x − 3)2/2))2 .

By rearranging the terms, this inequality is equivalent to

(1 − 1/(2 ln 3))2(20x − 39 + 10(x − 3)2)2 > 4πx2 ln x

For x ≥ 3, we have ln x
3 ≤ x

3 − 1, which implies that

ln x ≤ x

3 + (ln 3 − 1) <
x

3 + 1
10 .

Since (1 − 1
2 ln 3)2 > 29

100 and π < 22
7 , it suffices to show that

29
100


20x − 39 + 10(x − 3)2

2
>

88
7 x2


x

3 + 1
10


,
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which is simplified to

29x4 − 4960
21 x3 + 26549

35 x2 − 5916
5 x + 75429

100 > 0.

To show this inequality, let p(x) denote the polynomial on the LHS. Since p is strictly convex and
p′(2) = −1936

35 and p′(3) = 4302
35 , it is strictly increasing on (3, ∞). Then, p(x) > 0 for any x ≥ 3

since p(3) = 2403
700 > 0. Therefore, ex

1+ex > Φ(tλ) for any x ∈ [3, ∞).

C Theorems 1′ and 2′

We extend all results of elections with opinion polls (Lemmas 1 to 3 and Theorems 1 and 2) to the
elections with supermajority rule or unanimity rule. The proofs are mostly the same as the original
proofs for the elections with simple majority rule, but we need to modify some details.

Preliminaries To simplify the presentation, we denote by ũ the payoff function under supermajor-
ity rule or unanimity rule. Formally, we define each voter’s payoff function ũ : [0, 1] × Θ → {0, 1}
by, given a threshold α ∈ (1

2 , 1],

ũ(āN , θ) =





1 if 1{āN ≥ α} = θ

0 if 1{āN ≥ α} ∕= θ,

where alternative 1 is chosen if and only if the vote share āN is at least the threshold α; namely,
the chosen alternative is 1{āN ≥ α}.

Next, we define the integer ñ such that alternative 1 is chosen if and only if it receives at least
ñ+1 votes. That is, we have ñ = k for the unique integer k such that k

N < α ≤ k+1
N .2 In particular,

we have ñ = N − 1 under the unanimity rule.

C.1 Theorem 1′

Lemma 1′. In any election P̃N , every symmetric equilibrium P̃ ∗
N has some p̃∗

N ∈ [0, 1] such that
for each θ and each k = 0, 1, . . . , N , the equilibrium vote share āN satisfies

Pr


āN = k

N
| θ


= 1

Z̃N (p̃∗
N , θ)


N

k



exp


ũ( k
N , θ)
λ



(p̃∗
N )k(1 − p̃∗

N )N−k, (1)

where Z̃N : [0, 1] × Θ → R is the function defined by

Z̃N (p, θ) =
N

k=0


N

k



exp


ũ( k
N , θ)
λ



pk(1 − p)N−k, (2)

and p̃∗
N ∈ [0, 1] is the unconditional probability of each voter voting for alternative 1.

2In the baseline election under the simple majority rule with N = 2n + 1 voters, we have ñ = n.
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One of the following holds:
1. P̃ ∗

N is an uninformative equilibrium if and only if p̃∗
N ∈ {0, 1}.

2. P̃ ∗
N is an informative equilibrium if and only if p̃∗

N ∈ (0, 1) is a solution to equation

Z̃N (p, 1)
Z̃N (p, 0)

= µ(1)
µ(0) . (3)

Proof. The original proof goes through up to deriving the first-order condition (9) if each u is
replaced by ũ.3 Here is the modified first-order condition:



θ

µ(θ) ·

2n

k=0


2n

k



exp


ũ(k+1
N , θ)
λ



− exp


ũ( k
N , θ)
λ



(p̃∗
N )k(1 − p̃∗

N )2n−k

N

k=0


N

k



exp


ũ( k
N , θ)
λ



(p̃∗
N )k(1 − p̃∗

N )N−k

= 0.

The denominator is Z̃N (p̃∗
N , θ) by the definition of (2). In the numerator, if k ∕= ñ then the square

bracket is zero, while if k = ñ then the square bracket equals e1/λ − 1 when θ = 1 and 1 − e1/λ

when θ = 0. Substituting them into (9), we have

µ(1)
Z̃N (p̃∗

N , 1)


2n

ñ



(p̃∗
N )ñ(1 − p̃∗

N )2n−ñ(e1/λ − 1) + µ(0)
Z̃N (p∗

N , 0)


2n

ñ



(p̃∗
N )ñ(1 − p̃∗

N )2n−ñ(1 − e1/λ) = 0,

which is equivalent to (3). For p̃∗
N ∈ (0, 1), (p̃∗

N , . . . , p̃∗
N ) is a Nash equilibrium if and only if p̃∗

N is
a solution to (3). 

Lemma 2′. In any election P̃N , Lemma 2 holds as is.

Proof. The original proof goes through with a few modifications. We define the function W̃N :
[0, 1] × Θ → R by

W̃N (p, 1) =
N

k=ñ+1


N

k



pk(1 − p)N−k,

W̃N (p, 0) =
ñ

k=0


N

k



pk(1 − p)N−k.

(4)

This function plays the same role as the function W plays in the original proof. Note that W̃N (p, 1)+
W̃N (p, 0) = 1 and that W̃N (p, 1) is strictly increasing in p and W̃N (p, 0) is strictly decreasing in p.

Then, it holds that

Z̃N (p, 1) = W̃N (p, 0) + e1/λW̃N (p, 1),

Z̃N (p, 0) = e1/λW̃N (p, 0) + W̃N (p, 1).
(5)

3Lemma A remains true if each u is replaced by ũ.
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Note that Z̃N (p,1)
Z̃N (p,0) is continuous and strictly increasing in p, because Z̃N (p, 1) is strictly increasing

in p and Z̃N (p, 0) strictly decreasing in p.
The remaining argument is the same as Step 2 in the original proof with the modification that

the functions WN and ZN are replaced by W̃N and Z̃N , respectively. 

Proof of Theorem 1′. This proof is analogous to the original proof. We only need to repeat the
same argument by setting the winning threshold α and replacing the functions u and W with ũ

and W̃ respectively and the integer n with ñ. Then, we have

Pr(āN ≥ α | θ = 1) =
e1/λ − µ(0)

µ(1)

e1/λ − e−1/λ
,

Pr(āN < α | θ = 0) =
e1/λ − µ(1)

µ(0)

e1/λ − e−1/λ
.

Hence,

Pr(ũ(āN , θ) = 1) = µ(1) Pr(āN ≥ α | θ = 1) + µ(0) Pr(āN < α | θ = 1) = e1/λ

1 + e1/λ
,

as desired. The proof that e1/λ

1+e1/λ > max{µ(1), µ(0)} when the informative equilibrium exists is
exactly the same as in the original proof. 

C.2 Proof of Theorem 2′

Lemma 3′. For each N , let P ∗
N be the informative equilibrium of any election P̃N that satisfies

Condition 1. Then,

lim
N→∞

p∗
N = α.

Proof. First, we consider the case of the supermajority rule, with a winning threshold α ∈ (1
2 , 1).

It suffices to show that for any small  > 0 such that 0 < α −  < α +  < 1, if we have a sufficiently
large N then

Z̃N (α − , 1)
Z̃N (α − , 0)

<
µ(1)
µ(0) <

Z̃N (α + , 1)
Z̃N (α + , 0)

. (6)

To see that (6) is sufficient, we note that Z̃N (p,1)
Z̃N (p,0) is continuous and strictly increasing in p. If (6)

is true then p̃∗
N ∈ (α − , α + ), where p̃∗

N is a solution to (3).
We show auxiliary inequalities. For any δ > 0, there is an Nδ such that for any N > Nδ,

W̃N (α + , 1) > 1 − δ, W̃N (α + , 0) < δ,

W̃N (α − , 0) > 1 − δ, W̃N (α − , 1) < δ,
(7)
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where W̃N is defined in (4). To see these inequalities, let w̃1, . . . , w̃N be i.i.d. Bernoulli random
variables that take values 1 and 0 with probabilities α+ and 1−α− respectively. Then, W̃N (α+
, 1) and W̃N (α + , 0) are the probabilities that the sample average 1

N

N
i=1 w̃i is, respectively,

strictly greater than α and strictly less than α. By the law of large numbers, there is an N ′
δ such

that for any N > N ′
δ, we have W̃N (α + , 1) > 1 − δ and W̃N (α + , 0) < δ. To see the other

two inequalities, let w̃′
1, . . . , w̃′

N be i.i.d. Bernoulli random variables that take values 1 and 0 with
probabilities α −  and 1 − α +  respectively. By the same argument, there is an N ′′

δ such that for
any N > N ′′

δ , we have WN (α − , 0) > 1 − δ and WN (α − , 1) < δ. Lastly, let Nδ = max{N ′
δ, N ′′

δ }.
Now we prove (6). This step is the same as that in the original proof with the modification that

the functions WN and ZN are replaced by W̃N and Z̃N respectively and that the winning threshold
1
2 is replaced by α.

Second, we consider the case of the unanimity rule, with a winning threshold α = 1. It suffices
to show that for any small  > 0, if N is sufficiently large,

Z̃N (1 − , 1)
Z̃N (1 − , 0)

<
µ(1)
µ(0) . (8)

To see that (8) is sufficient, we note that Z̃N (p,1)
Z̃N (p,0) is continuous and strictly increasing in p. If (8)

is true then p̃∗
N > 1 − , where p̃∗

N is a solution to (3).
We show auxiliary inequalities. For any δ > 0, there is an Nδ such that for any N > Nδ,

W̃N (1 − , 1) < δ, W̃N (1 − , 0) > 1 − δ, (9)

where W̃N is defined in (4). To see these inequalities, let w̃1, . . . , w̃N be i.i.d. Bernoulli random
variables that take values 1 and 0 with probabilities 1 −  and  respectively. Then, W̃N (1 − , 1)
and W̃N (1 − , 0) are the probabilities that the sample average 1

N

N
i=1 w̃i is, respectively, equal to

1 and strictly less than 1. By the law of large numbers, there is an Nδ such that for any N > Nδ,
we have W̃N (1 − , 1) < δ and W̃N (1 − , 0) > 1 − δ.

We show another inequality. Under Condition 1, there exists a small δ > 0 such that

1 + e1/λδ

e1/λ(1 − δ)
<

µ(1)
µ(0) . (10)

To prove this inequality, note that for a small enough δ, we have the LHS arbitrarily close to e−1/λ.
Since e−1/λ < µ(1)

µ(0) (Condition 1), we obtain (10).
Now we prove (8). For any N > Nδ,

Z̃N (1 − , 1)
Z̃N (1 − , 0)

= W̃N (1 − , 0) + e1/λW̃N (1 − , 1)
e1/λW̃N (1 − , 0) + W̃N (1 − , 1)

<
1 + e1/λδ

e1/λ(1 − δ)
<

µ(1)
µ(0) ,

where the equality is by (5), the first inequality by (9), and the second inequality by (10). Thus,
we have (8), which completes the proof. 
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Proof of Theorem 2′. Fix any θ and any l, h such that 0 ≤ l < h ≤ 1. As in the original proof,

1
N

ln Pr(āN ∈ [l, h] | θ) = 1
N

ln Z̃N ([l, h], θ) − 1
N

ln Z̃N ([0, 1], θ), (11)

where for any interval T ⊂ [0, 1],

Z̃N (T, θ) ≡


k: k
N

∈T


N

k



exp


ũ( k
N , θ)
λ



(p̃∗
N )k(1 − p̃∗

N )N−k.

First, we consider the case of the supermajority rule, with a winning threshold α ∈ (1
2 , 1). Fix

any δ > 0. As in the original proof, there exists an N1 such that for any N ≥ N1 and any k,

−Nδ <
ũ( k

N , θ)
λ

< Nδ,

and by Lemma 3′, there exists an N2 such that for any N ≥ N2 and any k,

e−Nδαk(1 − α)N−k < (p̃∗
N )k(1 − p̃∗

N )N−k < eNδαk(1 − α)N−k.

By these inequalities, for any N ≥ max{N1, N2},


1
N

ln Z̃N ([l, h], θ) − 1
N

ln


k: k
N

∈[l,h]


N

k



αk(1 − α)N−k


< 2δ. (12)

By Sanov’s theorem, there exists an N3 such that for any N ≥ N3,


1
N

ln


k: k
N

∈[l,h]


N

k



αk(1 − α)N−k + min
t∈[l,h]

{DKL(B(t)  B(α))}


< δ, (13)

where DKL(B(t)  B(α)) is the Kullback–Leibler divergence of B(t) from B(α). Note the non-
negativity property: DKL(B(t)  B(α)) ≥ 0 for all t ∈ [0, 1], with equality if and only if t = α.
The minimum exists in (13) since DKL(B(t)  B(α)) is continuous in t and [l, h] is compact. The
remaining argument (corresponding to Steps 3 and 4 in the original proof) is the same as that in
the original proof with the modification that the winning threshold 1

2 is replaced by α.
Second, we consider the case of the unanimity rule, with a winning threshold α = 1. Fix any

δ > 0. There exists an N1 such that ũ( k
N , θ)/λ > −Nδ for any N ≥ N1. Hence,

Z̃N ([0, 1], θ) ≥ exp


ũ(1, θ)
λ


(p̃∗

N )N > e−Nδ(p̃∗
N )N .

Since limN→∞ p̃∗
N = 1 (Lemma 3′),

lim
N→∞

1
N

ln Z̃N ([0, 1], θ) ≥ −δ.
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Since the choice of δ > 0 is arbitrary,

lim
N→∞

1
N

ln Z̃N ([0, 1], θ) ≥ 0.

Since ũ( k
N , 1) = 0 and ũ( k

N , 0) = e1/λ for all k ∕= N ,

Z̃N ([0, 1 − ], θ) =


k: k
N

≤1−


N

k



exp


ũ( k
N , θ)
λ



(p̃∗
N )k(1 − p̃∗

N )N−k

≤ e1/λ


k: k
N

≤1−


N

k



(p̃∗
N )k(1 − p̃∗

N )N−k.

Fix any η ∈ (0, ). Since limN→∞ p̃∗
N = 1 (Lemma 3′), there exists an N ′ such that p̃∗

N > 1 − η for
any N > N ′. Since p̃∗

N ≤ 1 and 1 − p̃∗
N < η,

Z̃N ([0, 1 − ], θ) < e1/λ


k: k
N

≤1−


N

k



ηN−k < e1/λ(1 − η)−N


k: k
N

≤1−


N

k



(1 − η)kηN−k.

Hence,

lim
N→∞

1
N

ln Z̃N ([0, 1 − ], θ) ≤ − ln(1 − η) + lim
N→∞

1
N

ln


k: k
N

≤1−


N

k



(1 − η)kηN−k.

By Sanov’s theorem,

lim
N→∞

1
N

ln


k: k
N

≤1−


N

k



(1 − η)kηN−k = − min
t∈[0,1−]

{DKL(B(t)  B(1 − η))}.

Since η < , it follows that

min
t∈[0,1−]

{DKL(B(t)  B(1 − η))} = DKL(B(1 − )  B(1 − η)).

Then,

lim
N→∞

1
N

ln Z̃N ([0, 1 − ], θ) ≤ − ln(1 − η) − DKL(B(1 − )  B(1 − η)).

The choice of η > 0 is arbitrary. Since limη→0 ln(1 − η) = 0 and limη→0 DKL(B(1 − )  B(1 − η)) =
+∞, it follows that

lim
N→∞

1
N

ln Z̃N ([0, 1 − ], θ) = −∞.
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By (11),

lim
N→∞

1
N

ln Pr(āN ∈ [0, 1 − ] | θ = 1) = −∞.

The remaining argument (corresponding to Step 4 in the original proof) is the same as that in the
original proof with 1

2 replaced by α. 
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