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Abstract
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1 INTRODUCTION

The desire for wealth accumulation is well established in the literature. According to Max Weber
(1958), “man is dominated by the making of money, by acquisition as the ultimate purpose of his
life. Economic acquisition is no longer subordinated to man as the means for the satisfaction of his
material needs”. The recent explosion and success of capital guarantee funds suggest that investors are
looking for downside protection but at the same time upside potential. Fund trusts and institutions
such as a university or a foundation may also seek asset preservation. When a non-profit organization
receives an endowment and other long-term funding, it has to manage these resources prudently by
establishing a spending policy that accommodates the need for asset protection and portfolio growth.
Usually donors require endowment assets to be kept permanently and prohibit grantees from using or
borrowing against principals. Returns can be used for contributions, or to increase the endowment
assets. The aim of such spending rules is to preserve financial independence and to avoid the purchasing
power erosion over time!. Fund performance is often measured by all-time record levels that seem to be
appealing to people, and high-water marks? are common in the investment management industry. For
instance, some financial services firms offer their customers the following portfolio insurance strategy:
an investor who stays invested until the fund matures is guaranteed to receive a value equal to the
highest value of the fund ever achieved, even if the fund’s daily value has fallen since its highest point.

In this paper, we analyze the intertemporal investment-consumption rules for an infinite lived
individual maximizing her expected discounted utility under wealth ratcheting. Namely, the agent
does not tolerate losing more than a fixed percentage of her all-time high level of wealth. This
constraint was first introduced by Grossman and Zhou (1993) who argue that a large drawdown
(typically above 25 percent) is often a reason for firing fund managers?.

The key intuition behind most of the results is driven by two effects. First, as in any portfolio

Tn the US, trustees and charity professionals who run foundations after a founder’s death are only obliged to spend
as little as 5% a year of the capital. In many foundations, capricious and poorly thought out projects or programs were

undertaken to fulfill the interests of trustee managers not the wishes of the founder (The Economist, May 28th 2005).
2The high-water mark is a target value that can depend on the current asset value of the fund, and it is adjusted due

withdraws, allocated expenses and a contractual growth rate. In the simplest case, the high-water mark is the highest

level the asset has reached in the past.
3Grossman and Zhou’s (1993) examine the problem of maximizing the long term growth rate of expected utility

of final wealth. Their analysis is quite insightful but they do not allow for endogenous withdraws from the fund to
finance intermediate consumption. Cvitanic and Karatzas (1995) extend their work to a more general class of stochastic

processes by developing a martingale approach.



selection problem under market restrictions, the agent is concerned with hedging motives that in
the future the constraint may be binding. As a benchmark, hedging concerns are addressed in a
simpler framework when the investor is required to maintain her wealth above a fized floor (foundation
charter requirement). Essentially, risk aversion is enhanced, which leads to smaller stock holdings and
lower consumption plans with respect to the unconstrained case. Both optimal allocations are found
increasing in wealth. Second, the drawdown constraint displays a ratcheting feature since each time
financial wealth reaches a new record high, the minimum floor rises and the restriction becomes more
stringent. The agent has two margins of adjustment at her disposal to regulate the growth of her
wealth: consumption and risky investment. The latter is the most sensitive of the two as it governs
the diffusion component of the wealth process. The optimal solution of the model reflects the trade-
off between consuming today and deferring consumption to take advantage of investing in the stock
market, which may be thwarted by the presence of the ratchet. We derive conditions under which, as
wealth approaches its all-time high, the fraction of wealth invested in stocks decreases and possibly is
set to zero. In this last case, the maximum to date level of wealth is an upper reflecting (absorbing)
barrier if the individual is fairly patient (impatient) with a large (small) intertemporal elasticity of
substitution (IES).

Tracking wealth movements, the optimal consumption policy exhibits a ratcheting behavior and
large drawdowns from its all-time consumption level are prohibited. We emphasize the correspon-
dence between wealth ratcheting and habit formation in the spirit of Duesenberry (1949). This twin
ratcheting is an important result that rationalizes the loss aversion for wealth, in particular for an
investor who delegates the management of her wealth and aims at maintaining her standard of living.
An extension of the basic model embeds the spirit of capitalism by including wealth, an index of social
status, inside the utility function?. Persistent benefits derived from building up status lead to a more

aggressive risky investment policy whereas consumption becomes less appealing.

This paper builds on the dynamic portfolio choice literature. Early works on optimal consumption-
investment allocations in a frictionless market and no borrowing restrictions include Samuelson (1969)
and Merton (1971). Then, attention has been paid on more real world situations where investors

face constraints in their portfolio investments®. In general, the optimal strategy differs from the

“For instance see Baski and Chen (1996) and Smith (2001).
5Cvitanic and Karatzas (1992) and Cuoco (1997) develop a general martingale approach to cope with convex contem-

poraneous constraints on trading strategies which includes the case of incomplete markets and prohibited short sales.

Cuoco and Liu (2000) analyze the optimal consumption portfolio choice problem under margin requirements and eval-



unconstrained one as the agent aims at hedging against the constraint (at some cost) since even
though the constraint may not be binding, there is a possibility that it does in the future. Recent
papers focus on portfolio allocations under wealth performance relative to an exogenous benchmark
such as in Browne (2001) or subject to growth objectives required by the decision maker as in Hellwig
(2003). In Carpenter (2000), the fund manager is compensated with a call option on the wealth she
manages with a benchmark index as strike price. The author shows that the option compensation does
not necessarily lead to more risk seeking. Goetzmann, Ingersoll and Ross (2003) study hedge fund
compensation schemes when managers perceive a regular fee proportional to the portfolio asset value
and an incentive fee based on the fund return each year in excess of the high-water mark. Consistent
with empirical evidence, they obtain that a significant proportion of managers compensation can be
attributed to the incentive fee, in particular for high volatility asset funds for which high manager
skills are required.

The paper is also related to the trend of research that strives to provide some alternative to the
usual time separable von Neumann-Morgenstein preferences whose performance has been poor from
an empirical point of view. In particular, such preferences have failed to explain the equity premium
puzzle, i.e. the fact that returns on the stock market exceed on average the return of Treasury
bills by an average of six percentage points. Habit formation preferences such as Sundaresan (1989),
Constantidines (1990), Detemple and Zapatero (1991) postulate that agents not only derive utility
from current consumption but also from consumption history, typically captured by a standard of
living index. However, for tractability reasons, many models assume that the agent derives utility
from the excess between current consumption and the habit level. If the marginal utility at zero is
infinite, the standard of living index acts as a floor level below which current consumption does not
fall. This addictive feature - optimal consumption levels can only increase across time regardless of the
state of the economy- is not supported by empirical evidence. Detemple and Karatzas (2003) address
this issue and investigate the case of finite marginal utility of consumption at zero when imposing a
non-negativity constraint on consumption plans. When the shadow price of consumption is high, the
agent optimally reduces her consumption along with her standard of living and the associated “cost” of
habits as well. An alternative approach proposed by Dybvig (1995) is to ratchet current consumption.

Originally, Duesenberry (1949) emphasized that consumption may not be entirely reversible over time

uate the cost of the constraint. He and Pages (1993) and El Karaoui and JeanBlanc-Picqué (1998) treat the case of
non-negative wealth in presence of labor income. Grossman and Villa (1992) followed by Villa and Zariphopoulou (1997)

study the consumption-portfolio problem for a CRRA investor facing a leverage constraint.



but instead may increase along with income and decline less than proportionally with it. Dybvig (1995)
formalizes this idea by looking at an extreme form of habit formation where consumption is prevented
from falling over time. With little work, it is possible to extend Dybvig’s analysis and assume that
the agent is intolerant to any decline that exceeds a fixed proportion of her all-time consumption. In
some sense, the model derived here is a mirror problem as we show that imposing ratcheting on wealth
induces a ratcheting behavior on consumption with a strong parallel with Dybvig (1995).

Finally, our model can be seen as an example of extreme loss aversion in wealth since utility can
be defined to be minus infinity if the drawdown constraint is violated. The concept of loss aversion
was first proposed by Kahneman and Tversky (1979 and 1991) and postulates that the impact of a
loss is greater than that of an equally sized gain. Barberis, Huang and Santos (2001) explore the
implications on asset prices of loss aversion by considering an investor who derives utility not only
from consumption but also from changes in the value of her financial wealth. Their model is flexible

enough to allow the degree of loss aversion to be affected by prior investment performance.

The paper is organized as follows. Section 2 describes the economic setting and contains the
derivation and the analysis of the optimal consumption and portfolio allocations. In section 3, we
assess the cost of the drawdown constraint. Section 4 presents an extension of the basic model that
embeds the spirit of capitalism using wealth as a proxy for social status. Section 5 concludes. Proofs

of all results are collected in the Appendix.

2 THE ECONOMIC SETTING

Time is continuous. An infinitely lived investor, who is reluctant to let her wealth fall more than a
fraction of its historical maximum, has to optimally allocate her wealth between a risk-free bond, a

risky asset and consumption.

Individual preferences. There is a single perishable good available for consumption, the numéraire.

Preferences are represented by a time additive utility function

Ul)=E [/OOO u(cs)e_esds] ,

where the instantaneous utility function u is twice continuously differentiable, increasing and strictly
concave and 6 denotes the subjective time discount rate. In addition, u satisfies the following Inada

conditions: lim u/(¢) = co and lim «/(¢) = 0. In the sequel, we focus our analysis on an individual
C— OO

c—0



with constant relative risk aversion preferences

1—

b
T bF1
Inc, b=1.

u(c) =

Information structure and financial market. Uncertainty is modeled by a probability space

(Q, F, P) on which is defined a one dimensional (standard) Brownian motion w. A state of nature w
is an element of 2. F denotes the tribe of subsets of €} that are events over which the probability
measure P is assigned. Let F; be the o-algebra generated by the observations of w {ws;0 < s <t}
and augmented. At time ¢, the investor’s information set is F;. The filtration F = {F;, t € R, } is the
information structure and satisfies the usual conditions (increasing, right-continuous, augmented). All
the processes considered in the sequel are progressively measurable with respect to IF and all identities
involving random variables (respectively stochastic processes) should be understood to hold P — a.s.

(respectively, (Lb x P) — a.e., where Lb denotes the Lebesgue measure on R.).
There are two securities available in the financial market:

- a risk-free bond whose price B evolves according to
dBs = rByds,
where r is the constant interest rate, and,

- an index modeled by a risky security whose price S follows a geometric Brownian motion
dSs = Ss (pds + odws) ,

where dws is the increment of a standard Wiener process, p is the mean return of the stock index .S
and o2 is its instantaneous variance. Let  and z be respectively the amount of dollars invested in the
riskless bond B and risky security S, so that the wealth process W is equal to  + z. A consumption

plan c is feasible if there is a trading strategy (x, z) such that
dWs = (rWs —cs+ 2zs(n — 1))ds + ozsdws,
Ws > -K, (1)
with K > 0. The condition W > —K rules out arbitrage opportunities, such as doubling strategies

presented in Harrison and Kreps (1979). Finally, trading strategies (z,z) and consumption plans ¢

are adapted processes satisfying the standard integrability conditions

oo oo o0 o0
/ c2ds < oo, / |rzs| ds —i—/ |pzs| ds +/ 02%ds < oco.
0 0 0 0

6



Drawdown constraint.  Let M; = sup {Ws, Mp} be the maximum to date ¢ level of wealth. As
0<s<t

introduced in Grossman and Zhou (1993), the drawdown constraint is
Ws > abM, (2)

for some « in [0, 1]. This constraint indicates that the investor is reluctant to let her wealth fall below
a fraction of its maximum to date. In the investment management industry, a realistic estimate of «
ranges from 75 to 88 percent. In practice, different values of a may apply to different types of traders.
For instance, for proprietary traders (internal hedge fund traders) who invest money belonging to
their company, a can depend on the target amount of money a trader is required to generate during
the year and could be as high as 94 percent.

We first review the main results for the unconstrained problem studied by Merton (1971).

2.1 Benchmark case: Merton problem

Within our financial market framework, the Merton problem (1971) for a CRRA investor is

00 Cl—b
F(W;) = max E s e g
(W) I(Tclf?)( t {/t 1 be s,

subject to the budget constraint (1) and W; > 0 given. The transversality condition for this problem

is
lim E, [F(WHT)e_G(”T)} ~0.
T—o0

;
Merton (1971) shows that both the fraction of wealth invested in stocks - and the consumption-

!
wealth ratio VCV—: are constant and given by

Zs  p—T
W,  bo?
cg _ 1
w, A

where A~! = % + b_Tl (7’ + 0;;;?) > 0. The (optimal) wealth process W/ is a geometric Brownian

motion whose dynamics are

2
F_ v f 1 (p—r) p—r
AWy = W; ((7“ - + bl )dt + o dwy | .
In order to gain insights about the effects of the drawdown constraint (2), we examine the simpler
consumption-portfolio choice problem where wealth is required to be kept above a fized minimum floor

adjusted for inflation. In particular, this allows us to isolate and quantify hedging motives.



2.2 Fixed minimum floor problem

Consider a foundation whose charter stipulates that the endowment aM > 0 adjusted for inflation
with rate A > 0 cannot be used for expenditures (only the returns are eligible). No other constraint
is assumed regarding the growth objectives of the trust fund of the foundation. At any time ¢, wealth
W, must be maintained above a minimum level aMe. Let us define /Wt = Wte*’\t, & = e~ M and
2, = ze~ ™. Given the linearity of the wealth dynamics and the homogeneity of the utility function,

the investor’s problem can be written

/\ o] ’C\lfb ,
F(W;) = max E = Vg
(W) max By [/t T s

s.t. dWS = (r’Ws — Cs + 25(p — r’)) ds + oZsdws P)
/Ws > aM, /Wt > ( given,
where the parameters adjusted for inflation are ' = r — X\, ¢/ = p— A, and the adjusted time discount

rate @/ = 6 + (b — 1))\ is assumed to be positive. The transversality condition is the same as before.

We still require A > 0 and in addition we make the following assumptions:
A1l. The interest rate ' is positive.
A2. The Sharpe ratio of the risky asset is positive.

Assumption Al. is required for feasibility. Assumption A2. is made for convenience and without loss

of generality.

First of all, note that the value function F is increasing and concave® in W, Then, for w > aM, the

Hamilton Jacobi Bellman (HJB) equation of this problem is

~1-b - 2
OF = max 1+ (r’W e - r')) F i %(E)QF”. (3)
The optimal conditions are
& o= (F)7h
W
= T g2F"
and F satisfies the following non-linear ODE
b—1
b(F/)T _ 1/ =7 2 (F/)2
OF = ——— +7"WF' — ~ . 4
5 " 2\ o " 4)

5The strict concavity of F' comes from the fact that the utility function is strictly concave and the constraint is linear

so that if W and W'are admissible wealth processes, then for all A in [0, 1], AW + (1 — X)W’ is also admissible.



Lemma 1 The general solution of ODE (4) is such that

—~ —~ —~_ B1-1 —~_ Bh—1

W = A(F'(W))"b + Ly(F'(W)) 5 + Lo(F'(W)) 7, (5)

where (3} and B are respectively the positive and negative roots of the quadratic

1/ —r\? , 1, 1/ =r\? 1
2< bo )“’* 27" 2T Sy

and L1 and Lo are two constants to be determined.

Proof. See the Appendix. m
Useful results ] > 1 and 1 — b — (5 > 0 are proved in the Appendix.

Boundary Condition at the Minimum Floor. At W= aM ., we have

! !
p1—1 By—1

aM = A(F'(aM)) ™ + Li(F'(aM)) "% + La(F'(aM)) 5,

and in order not violate the constraint with some positive probability in a near future, stock holdings

must be zero, which implies

)
b

A= (8, — )La(F(abD)) & + (8 — 1) La(F'(ald))

When W is large, the constraint is equivalent to W > 0, so the solution is equivalent to the one for the

unconstrained case, i.e. F’(W) ~ Ab(W)_b. Since %b_l < —3, we must have Ly = 0. At W = aM,
o

the consumption-wealth ratio and the constant L; are given by

I T
aM ~—  BA A

aM ﬂi < A >1—51
L1 = — > 0.
' <m> B —1

Note that at W = aM, the wealth dynamics are deterministic

‘i SN2
It is easy to see that 7’ — ’351, Al = % (“ — ) (8] — 1) is positive, which means that wealth bounces
1

back upward after hitting the minimum floor”.

"This property is actually necessary for a well defined problem. In the sequel, when the drawdown constraint (2) is

imposed, restrictions on the parameters of the model are made so that this “reflecting condition” is satisfied.



2.2.1 Properties of the optimal allocations

The consumption-wealth ratio % is given by

e 1
_ -~
WAy L)

It is increasing in wealth and smaller than in the unconstrained case. The fraction of wealth invested
in the stock is given by
z* —r rA
Z k7T B+ 5
A+ Li(F'(W))

W bo?
This ratio is monotonic (increasing) in wealth and smaller with respect to the unconstrained case.

/
oL
b

The reason is the rise of the relative risk aversion of the lifetime utility in wealth since

" / / %
Wy [y AREYE
A+ (L= B)Li(FW) T

> b.

At the floor W = oM, this relative risk aversion is infinite and consequently holdings in stock are
zero. Note that the risky investment strategy is not of CPPI (that is, constant proportion portfolio
insurance) type as proposed by Black and Perold (1992) and optimally derived by Grossman and Zhou
(1993) for a stochastic floor. As wealth increases, lifetime utility relative risk aversion decreases and
as wealth becomes very large, the effects of the constraint vanish: optimal allocations converge to the

optimal unconstrained ones.

Our analysis so far has shown that in presence of a fized minimum floor, hedging motives induce
a reduction in consumption and risky investment and enhance risk aversion. In the next section, we
will see that the ability of the individual to control the minimum floor combined with a ratchet effect
lead to quite different properties of stock holdings as well as for consumption plans as they serve as

wealth growth regulators.

2.3 Consumption-portfolio choice problem with a drawdown constraint

The agent aims at maximizing her lifetime utility

oo 1-b
F(Wt, Mt) = max Et |:/ s 679(87t)d8 y
(c,2) ¢ 1-=0b

subject to constraints (1) and (2), with W > 0, M; > 0 given.

10



Transversality Condition. The transversality condition for this problem is:
Jim B, [F(WHT, My, p)e D) =,
—00

As before, we assume that A and r are positive as well as a positive Sharpe ratio. Further assumptions
on the parameters are made in the sequel to ensure feasibility. We start the analysis by reviewing

some useful properties of the maximum process M and the value function F'.

2.3.1 Properties of the maximum process
P1. As mentioned in Grossman and Zhou (1993), M is a continuous increasing process and thus a
finite variation process.

P2. Denoting by [X, Y] the quadratic covariation between processes X and Y, we have d [M, W], =0
and d [M,M], = 0.

2.3.2 Properties of the value function

P1. F is strictly increasing and concave in W and decreasing in M.
P2. F is homogenous of degree 1 — b in (W, M).
Proof. See the Appendix. m
Property P2 implies that
F(W, M) = M""f(u),

with u = % and some smooth function f. Note that from property P1 f is also concave and strictly

increasing in u.

2.3.3 Derivation of the value function.

Given the properties of the maximum process M, for W € (aM, M), the HIB associated to the

investor’s program is

1—b o2
5 + (W —c+z(p—r)) F1 + ?zZFH. (6)

0F = max
(c,2) 1 —

The optimal conditions can be rewritten

¢ = M(f(w)h
Z o (p=r)f(u)
W o2uf"(u)

11



and for u € (o, 1) the function f satisfies the non-linear ODE
b( f! % _ 2 2
o5 = MEDL 4y - 3 (A0 ) L

1-b 2
As shown in lemma 1, the general solution f of the ODE (7) is such that

w=A(f' ()b + K (f' ()7 + Ko(f (w) 5, (8)

where 31 and 32 are respectively the positive and negative roots of the quadratic

1,u—7“22 1 1,u—7“2 1
2<ba>‘”+<A r 2<&7 = )

and K7 and K5 are two constants to be determined. In the sequel, we find that K7 > 0 and Ky < 0.

Interpretation of the solution The optimal wealth process is the sum of three terms:

W = AM(f(u)"F + K1 M(f'(u) ™5 + KoM (f'(u)) %

The first one is the usual consumption term as in Merton problem. The second term is positive and
incorporates hedging motives as in the fixed minimum floor problem. This term can be related to
portfolio insurance strategies involving simple options such as in Black and Perold (1992). Finally,
the third term is negative and regulates the growth rate of the wealth to mitigate the ratchet effect
of the stochastic floor.

The focus of the next paragraph is to establish the boundary conditions at © = « and u = 1.

2.3.4 Boundary conditions

The boundary conditions are derived in the Appendix. To sum up, at v = «, as in the minimum
floor problem, holdings in the risky asset must be zero. At u = 1, the condition must ensure that the
Hamilton Jacobi Bellman equation still holds. There are two possibilities depending on the parameters:
either Fy(M,M) = 0 or holdings in the risky asset is set to zero. Denoting ¥ = (f’(l))% and
X = (f/(a))%, the boundary conditions are

aX = A+ K X% 4 K, XP
A = (B — DK X+ (B — 1)Ko X

Y = A+ K Y%+ Ky

1—b— 3102

A— (B — DK YP' 4+ (B — 1KoY = max {0, -

<M—Yﬁb#L

12



where A = w and when b =1, Y = A = Ay = %. The following proposition specifies the

optimal holdings in stock when v = 1.

Proposition 1 Whenever b > 1 (b < 1), as long as Y < Ay (Y > Ay), the optimal boundary
condition at W = M is Fo(M, M) = 0 and stock holdings are positive, z; > 0. Otherwise, setting the

risky portfolio allocation to zero, 27 = 0, is the optimal boundary condition at W = M.

Proof. See the Appendix. m

As developed in more details in the sequel, the intuition behind the results of proposition 1. is
the agent’s willingness of mitigating the ratchet impact (and the irreversible associated cost) of the
drawdown constraint. The existence and uniqueness of the quadruple (K7, K3, X,Y) with K7 > 0 and

Ky < 0 are shown in the Appendix.

2.3.5 Reflecting condition

As already mentioned in the section 2.2, when the drawdown constraint binds, the wealth dynamics
are deterministic

1
th = (7" — Y)Wtdt

In order for the wealth process W to remain above the minimum floor aM in the next instant, we
must have r > %
Having solved the HJB equation and determined the boundary conditions at v = o and u = 1, we

now analyze the properties of the optimal allocations.

2.4 Properties of the optimal allocations

2.4.1 Consumption

Optimal consumption ¢* is implicitly defined by the relationship

% ye (;&) , (10)

where G(z) = Az + K12' 7% 4+ Koz~ and since G’ > 0, it is increasing in current wealth W. The

consumption wealth ratio is given by



SO

5 (5) =t ()

since due to hedging motives, we establish in the sequel that z < k o E=F . which implies that the lifetime

utility relative risk aversion — ]J:,IEEL)) is above its unconstrained level b.

The consumption-wealth ratio {5, is increasing in the ratio current wealth over its peak, so in

particular increasing in current wealth and decreasing in the historical maximum level of wealth. At
the ceiling W = M, we have i = %, so in particular, for b > 1, Y > A (see the Appendix), we can
conclude that for all  in [, 1], & ¢ < %. Recall that the intertemporal elasticity of substitution (IES)
s is equal to . Hence if the investor is reluctant (s < 1) to alter her consumption plans overtime, she
chooses to consume a lower fraction of her wealth than she does in the unconstrained case. Conversely,
when b < 1, we have Y < A. Therefore, when the investor is willing to alter her consumption plans
(s > 1), for E large enough, the consumption-wealth ratio is larger than in the unconstrained case.
For « close to 1, this property is global® in the sense that for all u in [, 1], & W > 7

Next, we show that optimal consumption inherits a ratcheting behavior from wealth and habit

formation endogenously arises.

All-Time High Consumption and Habit Formation. Denoting ¢}, = sup {c;} the maximum
0<s<t

to date level of consumption, for 0 < s < ¢, we have & % Since My < My, it follows that for

><

all date ¢,

%

<

ﬁ‘ﬁ

Y
X th'

» %

The current consumption level ¢; over its peak ¢}, remains within the fixed band [ae, 1], with o, =
% < 1. The maximum drawdown in consumption from its previous all-time high is 1 — a, and it
decreases as « goes up (see the Appendix). Imposing ratcheting on the wealth process induces a
ratcheting behavior of the optimal consumption as posited by Duesenberry (1949) and analytically
derived by Dybvig (1995). When the investor does not tolerate any decline in consumption, Dybvig

ﬁ? ]\/It

establishes that for all times t, —t < W; < =R This implies that current wealth W; must be kept

. Grossman and Zhou (1993) claim that the reason for such a
restriction on the manager’s investment policy is that the owner of the fund psychologically (and often

physically) commits to use part of the profit when reaching the peak. Dybvig argues that imposing a

81n the limit case & = 1, we show in the sequel that the consumption-wealth ratio is equal to ALO and that X =Y = Ayp.
Since for b > 1, A%. > %, by continuity, we deduce that for large values of the drawdown coefficient «, we have aX < A

and this implies % > %, for all w in [a, 1].

14



drawdown constraint on wealth seems ad hoc from an economic point of view, and his motivation was
to offer an alternative to the work by Grossman and Zhou (1993). Although the problem studied here
and Dybvig’s model are not equivalent, our analysis provides a bridge between the two approaches
as well as an economic justification in terms of preferences (habit formation) over consumption for
downside protection on wealth. The drawdown constraint (2) is a practical and effective way to ensure

that standard of living will not have to be lowered by too much in the case of an adverse shock.

We now investigate the impact of the magnitude of the drawdown proportion « on the consumption-

wealth ratio.

Proposition 2 If zf = 0 is optimal, the more stringent the drawdown constraint (higher «), the
smaller the consumption-wealth ratio for all w in [, 1]. When zf > 0 is optimal, if b > 1, the
previous result remains valid. However, if b < 1, there is a critical value u}, in (a, 1), such that the

consumption-wealth ratio decreases in a on [a, ul] and increases on [u}, 1].

Proof. See the Appendix. m

Proposition 2 suggests that for an investor with a high IES (s > 1), when wealth is about to reach
its peak, for large values of «, the investor relies on the consumption margin to regulate the growth

of her wealth and dampen the ratchet effect.

15
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The consumption-wealth ratio % is displayed in Figures 1.1 and 1.2 for several values of the

drawdown constraint parameter . For b > 1, as « goes up, % uniformly shrinks and remains below
the unconstrained ratio % = 0.0672. The reduction in consumption is large when wealth is close the
minimum floor. For a = 0.6, 0.8, 0.9 and 0.95, the endogenous ratchet coefficient for consumption
a. is 0.29, 0.43, 0.53 and 0.61 respectively. For b < 1, curves cross with one another and as asserted
in proposition 2 when u is high enough, an increase in « leads to a higher consumption-wealth ratio
that significantly exceeds the unconstrained ratio % = 0.04. When o = 0.6, 0.8, 0.9 and 0.95, the
values obtained for a, are 0.14, 0.22, 0.28 and 0.34 respectively. Observe that larger drawdowns 1 —
from all-time high consumption level are allowed than in the case b > 1, reflecting the fact that the

individual’s TES is higher so she tolerates larger changes in her consumption plans across time.

We now examine the properties of the optimal portfolio strategy.

2.4.2 Assets allocations

The fraction of wealth invested in the risky asset is given by

B2

S (1 B () + 52Kz(f’(U))b> |
At Ky (/) + Ka(f"(w)

w bo?

a-‘[?

The fraction of wealth invested in the risky asset is lower than in the unconstrained case, i.e. %.
This is due in part to the hedging motives as described in the section 2.2. However, numerical
simulations (displayed in the sequel) indicate that the investor’s desire to dampen the ratchet effect

plays a significant role in explaining the reduction in risky investment.

Proposition 3 When Fy(M, M) = 0 is optimal, if b > 1(b < 1) and § < (0 > <), the fraction of

w..

wealth invested in the risky asset is non-decreasing in the ratio 3;; otherwise it is hump-shaped. When

2] = 0 is optimal, the fraction of wealth invested in the stock and the ratio % are linked by an inverted

U -relationship.

Proof. See the Appendix. m

Conditions for the logarithmic investor are more cumbersome and are presented in the Appendix.

Proposition 3 deserves several observations. First, choosing an increasing risky investment policy

is optimal when the cost associated with the ratchet effect is not too large. Observe that 6 is the
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consumption-wealth ratio at u = 1 for the myopic investor (b = 1). When b > 1, the investor “s IES is
low (s < 1) and she is mainly concerned with the current consumption-wealth ratio and is reluctant
to defer consumption. Proposition 3 suggests that the agent optimally chooses an increasing risky
investment policy provided that at u = 1, % = % is above the corresponding value for the myopic
investor. Conversely, when b < 1, when eager to defer consumption and to accept a low level of
her current consumption-wealth ratio (below that of the myopic investor) at w = 1, the fraction of
wealth invested in stocks is increasing. Nevertheless, note that since for b > 1(b < 1), at u = 1, the
consumption-wealth ratio % = % goes down (up) when « increases forcing the investor to curb risky
investment as a percentage of wealth.

Second, decreasing stock holdings as a percentage of wealth when W; is close to M; depart from
the results obtained in Grossman and Zhou (1993) where the fraction of wealth invested in stock
always increases in the ratio % Recall that in Grossman and Zhou (1993) there is no intermediate
consumption so intertemporal consumption substitution plays no role. Nevertheless, the hump-shaped
relationship corroborates the intuition pointed out by these authors, i.e. aM is expected to grow at a
faster rate than W and therefore investment in the risky asset is expected to fall. The lifetime utility
relative risk aversion is no longer decreasing as (current) wealth rises but instead is U-shaped.

The condition for the ratio - to be non-decreasing in % depends on all the parameters of the
model. A sufficient condition is § < r(6 > r) whenever b > 1(b < 1), i.e. the investor must be patient

(impatient) enough when her relative risk aversion is high (low).

Proposition 4 The more stringent the drawdown constraint (higher o), the smaller the fraction of

wealth invested in the risky asset.

Proof. See the Appendix. m

Proposition 4 formally states that an increase in « uniformly reduces % for all couples (W, M)

and suggests that indeed risky investment is the favored channel to achieve wealth growth regulation.
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Figure 2 : Fraction of wealth invested in stocks % as a function of u
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Figure 2 depicts the fraction of wealth invested in the risky asset % for several values of the
drawdown constraint parameter o. As « goes up, risky investment is reduced and when « is large
enough, the curve % is hump shaped. As a benchmark, when o = 0, the unconstrained allocation the

p—r
bo?

fraction = 0.8. Indeed, observe that even when the current wealth W; is far from the minimum

floor aMy, the reduction in stock holdings can be substantial.

Obviously, the analysis performed combined both hedging and ratchet effects. In order to dis-
entangle the two effects, consider a fixed minimum floor equal to M and compute the fraction of
z

wealth invested in the stock EW* when wealth W varies from aM up to M. Note that the ratio W* is
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independent of the choice of M.

Table I: Disentangling hedging and ratchet effects

o u 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0925 095 0975 1
0.6 % 0 0283 0.383 0450 0499 0.537 0.568 0.581 0.592 0.603 0.613
% 0 0279 0375 0436 0478 0.506 0.526 0.532 0.537 0.540 0.541

08  F - - - - 0 0248 0.339 0.372 0.402 0428 0.450
=z - - - - 0 0230 0299 0318 0331 0.336 0.334
09 & - - - - - - 0 0168 0234 0.283 0.322
= - - - - - - 0 0143 0.184 0.199 0.190

Table I reports stock holdings EW* and those corresponding to the drawdown problem % for several
values of a. Recall that for the Merton Problem, this ratio is constant and equal to 0.8. Observe that
hedging motives explain a significant share of the reduction in risky investment. Nevertheless, the
ratchet effect becomes significant when the ratio % approaches 1 and is enhanced as the drawdown
constraint becomes more stringent (higher «). Taking the unconstrained portfolio allocation as a
benchmark, at u = 1, the ratchet effect accounts for 9%, 14.5% and 16% for o« = 0.6, 0.8 and 0.9

respectively of the total reduction in stock holdings.

2.4.3 Representation of the optimal wealth process

Optimal policies (¢*, z*) has been expressed in terms of state variables (W, M) using dynamic program-
ming. Alternatively, it is possible to provide a representation in terms of simple regulated stochastic
processes and gain some insights about the dynamics across time. Details of the derivation are pre-
sented in the Appendix.

First of all, we establish that the process % is a two sided regulated geometric Brownian motion®

with lower barrier % and upper barrier % and for u in («, 1), the dynamics are given by

aN_ e (1, (w=r)? p=r
d<Mt>—Mt<(r et B dwy )

9For the definition of a regulated Brownian motion, see Harisson (1985), pl4.
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Observe that this law of motion is the same as the one that governs the optimal consumption process
in the Merton problem. Then, the representation of current wealth W all time maximum wealth
M and consumption c* as stochastic processes depends on the boundary condition at ©u = 1. When
Fy(M, M) = 0 is optimal, we show that the process log H (%) is a one sided regulated arithmetic

Brownian motion with lower barrier —logY’, and for u in (a, 1),

dlog H <Wt> _ (0 )

- T
Mt b 2b02 )dt + 7dwt.

bo

If 27 = 0 is optimal, when wealth hits its peak for the first time 79, we have
AW, = (r — )Wt
t= y ) Weat.

There are two cases. If % < r, wealth will keep on increasing forever and for all t > 7y, Wy = M,,
¢ = % and zz = 0. The ceiling W = M is an upper absorbing barrier. Recall that ¥V <
m (Y > Wb_l)J whenever b < 1 (b > 1). Thus, a sufficient condition to have an upper absorb-
ing barrier when b > 1 is 8 < r, i.e. when the IES is small, the time discount rate needs to be smaller
than the riskfree rate. Conversely, if r < %, wealth is driven down immediately after hitting its peak
and cannot exceed My. The ceiling W = M is an upper reflecting barrier. A sufficient condition to
have an upper reflecting barrier when b < 1is 6 > r, i.e. when the IES is large, the time discount rate

needs to be larger than the riskfree rate.

In the next section, we estimate the cost induced by the constraint.

3 COST OF THE DRAWDOWN CONSTRAINT

There are several ways of estimating the cost of the drawdown constraint. We can assess the loss in
terms of forgone lifetime utility; alternatively, we can measure it in terms of the numéraire. We start

with the first measure and to keep things simple, we derive the maximum cost when o = 1.

3.1 Cost in terms of forgone lifetime utility

Wealth must always be maintained at its maximum, so in order not to violate the drawdown constraint,
holdings in the stock must be zero z* = 0. This is equivalent to solving the deterministic optimal

consumption-portfolio problem when only a bond is available. The optimal level of consumption is

proportional to wealth with ¢ = Aﬂo and the evolution of wealth is deterministic

r—=0

dW; =
t b

Wedt.
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byi/1—b
The problem is well defined if and only if r > 6 and the corresponding value function is Aol_b

The (maximum) cost of the drawdown constraint in terms of loss of the lifetime utility is the relative

difference between the constrained and unconstrained value functions. For b # 1, it is simply given by

<140>€b B 17
A
where ¢ = 1(e = —1) if b > 1(b < 1). For p = 0.12, r = 0.06, 0 = 0.2, § = 0.05, b = 2.5, the loss

is approximately 55.4%. It decreases with the instantaneous variance o2 but increases with the mean

return p.

3.2 Cost in terms of the numéraire

We calculate the percentage k increase in wealth necessary to bring the level of the lifetime utility to

the level of those of an unconstrained investor, i.e. we want to determine k such that F((1+ k)W) =
lA—_l})Wl_b. We obtain
b
Ap\ TP
k= (20) 7 o1
(%)

and for the parameters chosen previously, we find that the percentage increase k is approximately

34.2%. It also decreases with the instantaneous variance o2 and increases with the mean return .

For both measures, the cost induced by the constraint is economically significant.

4 EXTENSION OF THE BASIC MODEL

In this section, we consider the case of an agent who derives utility from current consumption and
also from her status. Broadly speaking, there are two rival theories of social status: ascription versus
achievement. Individual position can be ascribed by virtue of their age, sex, race, and family member-
ship or connection. Alternatively, individuals can achieve their own position by their own performance
and merits. Here, we interpret a society in which higher wealth confers a higher status. Status can
confer power, privileges, access to political circles or social events, and at a more personal level, en-
hance self esteem. As argued in Cole, Mailath, and Postlewaite (1992), social status can determine
the degree of success one group member may have with non-market decisions such as finding a good
mate for instance. Weber (1968) refers to a status group as a collection of individuals who happen
to have a common lifestyle and share the same economic interest. Maintaining one’s membership of

a status group is certainly desirable and ambition may dictate social climbing; however, individuals
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may be reluctant to lower their position in society. People who experience a downward social shift
may experience depression or poor psychological well being.°

Following Bakshi and Chen (1996) and Smith (2001), to keep things simple, we retain current
wealth level W as an index of status and status seeking is modeled as direct preference for financial

11

wealth. More specifically, preferences'* are given by

%’ W > aM
u(e, W, M) =

—00, otherwise,

where parameter a > 0 governs how much the agent cares about her social status.

We first examine the optimal consumption-portfolio choices for an unconstrained investor.

4.1 Benchmark Case

In the absence of status downfall fear, the agent aims at maximizing her lifetime utility

00 1-b
F(W;) = max E; [/ (cs +1aW[;S>
\ _

(¢,2)

e—e(s—t)ds

subject to the budget constraint (1) with W; > 0 given. The transversality condition for this problem
is the same as in the Merton problem. The Hamilton Jacobi Bellman (HJB) equation of this problem

is

%74 1-b 2
OF = max (et aW)™ + (W —c+z(p—r)) F' + T 2F
(%) 10 2
The optimal conditions are
—_nE
= (F’)*% —aW and z* = _(MUQFTB/?
and F' satisfies the following non-linear ODE
b(F')T 1 -1\ (F)?

0The University of Newcastle upon Tyne study by Parker, Pearce and Tiffin (2005) indicates that women are twice
as likely to be downwardly mobile. The study involved men and women born in 1947 in Newcastle and followed them
from childhood to age 50. Researchers noted the findings might be explained by the fact that men born during that
era gained much of their self-esteem from their careers, whereas women found fulfillment from social pursuits outside of
work, such as children and friendships. It’s also possible that women are more emotionally resilient in such situations,

the researchers suggested.
"The choice of the functional form of the utility function is motivated by tractability reasons.
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Inspection of the ODE (11) reveals that the problem can be nested in a standard Merton problem
as in section 2.1 with a riskfree rate r 4+ a and a mean return of the stock p + a. It follows that the

optimal allocations are given by

c* 1
— = =-a
w A
2 _ BT
W bo?’
with
~_1 0 b—-1 (w—r1)?
1—7 —_— S —
(A) =373 <7’—|—a+ T > 0.

For our choice of the functional form of the utility function, the lifetime utility relative risk aversion is
constant and equal to b so the risky portfolio strategy is unchanged by the spirit of capitalism. Status
seeking only affects the optimal consumption plans. Recall that the agent derives utility through two
channels: current consumption ¢ and current wealth . These two channels compete with each other:
the higher the consumption, the lower wealth accumulation and therefore the lower the future status.
An increase in status enjoyment (higher a) leads to a decrease in the consumption-wealth ratio: the
agent chooses to foster wealth accumulation, which is reflected by a higher mean growth of the wealth
process.

We now study the case when the agent is reluctant to accept large status downfalls. In particular,

we will see that status has a significant impact on stock holdings.

4.2 Maintaining Social Status

Given the homogeneity of degree 1—b in (¢, W) of the utility function, the linearity in variables (W, M)
of the drawdown constraint (2) and the form of the “reduced” HJB (11), it is easy to realize that the
analysis performed for the case a = 0 still applies if we substitute % with % and replace (p,r) with
(1 + a,r + a) in the definition of roots 31 and fs.

We now investigate the quantitative impact of status on the optimal allocations.
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Figures 3 and 4 represent the fraction of wealth invested in the risky asset % and the consumption-
wealth ratio % for several values'? of the parameter a. As a goes up, the investor increasingly values
social status, which leads to heavier stock holdings in an attempt to achieve a higher growth rate of
her wealth (Figure 3). In parallel, observe in Figure 4 that the consumption-wealth ratio uniformly
shrinks. Priority shifts towards building up status that has a persistent impact whereas consumption
is less appealing since its effect is only instantaneous. When a ratcheting behavior is imposed on
wealth, introducing wealth as a proxy for social status in the utility function fosters risky investment

in a substantial manner.

5 CONCLUSION

We have examined the implications of the intolerance of a large decline in wealth on optimal consump-
tion and portfolio policies for an investor with constant relative risk aversion preferences. We find that
wealth ratcheting induces a ratcheting behavior of consumption as current optimal consumption is al-
ways maintained above a fixed percentage of its all-time maximum. Hedging motives and mitigating
the cost associated with the ratchet feature of the constraint govern the agent’s intertemporal choices.
We have isolated the impact of hedging by analyzing asset management for a foundation required
to preserve its endowment. Essentially, the lifetime utility relative risk aversion rises, which leads to
smaller stock holdings. Looking at the wedge between optimal allocations for the fixed floor and a
ratchet floor allows us to quantify the ratchet impact and uncover its significance. In particular, the
investor may curb investment in stocks as wealth approaches its peak to limit its growth and the risk
of raising the minimum floor. An extension of the basic model incorporates the spirit of capitalism and
interprets wealth as an index for social status. Lasting benefits from current and future status levels
provide incentives for a higher growth of the wealth and induce a more aggressive risky investment
strategy at the expense of consumption.

Another possible extension would be to include labor income. If the correlation between labor
income and the stock market is small or negative, the investor naturally would like to borrow against
her future income to increase risky investment, which could drive down her financial wealth and

exacerbate both hedging motives and the ratchet effect. A detailed analysis is left for future research.

2For higher values of a, the reflecting condition at the minimum floor aM is violated.
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6 APPENDIX

A.1. Proof of Lemma 1

Consider the duality approach and the following changes of variables: X = F/(W),W = —J'(X) and
F(W)=J(X)— XJ'(X). Using relationship (7), we find that the function J must be solution of the

following linear ODE

b—1
bX T 1/ —1"\?
0I(X)="2" 40— XJ(X)+- (B x20x).
1-b 2 o
The general solution is
b—1
bAX & bL; B1-1-b bLsy By—1-b
X) = X —X 12
I = o+ g X 4 g X (12)

where L; and Ly are constants. Differentiating (12) with respect to X and using the fact that
X = F/(W) and W = —J'(X) provides the desired result. m

A.2. Proof of Properties 5] > 1and 1 —b— 3, > 0.
Recall that (] is the positive root of the quadratic
1/ =\, 1 L1 W=\ 1
@@—2< b )x+ a2 "3\ ) )T
Since Q(1) = —r’ < 0, we must have $] > 1. Then, using the fact that
1/ —1"\? 1/ —r"\? 1 1/ —1"\?
L AR B =1 and = (- / A r L
2( by ) a3 and o { =~ (81 + Ba) 2775 T ;

we find that

9/
1 (/= 2"
2 (oo

(Br+o-1)(1—-b—p) =

Since 3] > 1, indeed we have 1 —b— (35 > 0. m
A.3. Proof of Properties P1 and P2

P1. F' is strictly increasing in W and decreasing in M since given W, the higher M, the more
stringent the drawdown constraint. Let A € (0,1), (Wo, My) and (W{, My) be two initial states and
(¢, (z,2)) and (¢, (2, 2")) the associated optimal strategies. Then, for initial wealth AWj+ (1 — X)W,
Ae+ (1 =N Az + (1= Na', Az + (1 — N)2') is also a feasible strategy as the wealth dynamics are

linear in variables (¢, z, z) and

MV + (1 =W, > XaM;+ (1 - NaM,

> amax{My, \W; + (1 = \)W. s < t}.
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Finally, by strict concavity of the utility function u

Eo {/ u(Aes + (1 — )\)C;)eesdé‘] > Ey {/ (Au(cs) + (1 — )\)u(c;)) e %5 s,
0 0
which implies that F(AWo + (1= AW, Mo) > AF(Wo, My) + (1 = \)F(IW, My). w

P2. Let (¢, (z,z)) be feasible for an initial state (Wy, Mp) and A € (0,1). Then (Ac, (Az, Az)) is
feasible for the initial state (AWy, AMj) since the dynamics of the corresponding wealth process Wy

are

dWi(s) = (Arzs— Aes + Azsp)ds + Azsodws

= AW,

so Wi(s) = AW, and therefore Wy(s) = AW, > aAMs; = aMy(s). It follows that F(AW,AM) <
M= F(W, M) by homogeneity of degree 1 — b the utility function. Finally
F(W, M) =FO\TI]AW,A7IAM) < XLEOW, AM),
so in fact we have F(A\W,AM) = A= F(W, M). m
A.4. Derivation of Boundary Conditions

Condition for a well defined value function. The boundary conditions must be such that f is
well defined and the drawdown constraint is met. Taking derivatives with respect to u relationship

(8), it is easy to see that for all u in (a, 1)

bf 1 1—1 , 2—1
AP A ) = G- DB @) — (- DR ) (13)
Since —I}Jf,l((s)) is non-positive, for all u in [o, 1], we must have
(B = DEL(S ()T + (B = DE(f/ () T < 4. (14)

Then, set Y = (f’(l))% and X = (f’(oz))% and notice that Y < X. Given relationship (8), it must be

the case that the function
Y, X] — R
Doy — Ayl + Kyf T + Koyl

is invertible so we can write f’(u) = (<I>_1(u))b, for all w in [a, 1]. Since f” is negative, then ®' must

be negative. Condition (14) is equivalent to
U(y) = —A+ (b1 = DEwy™ + (B2 = )Eay™ < 0.
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As shown in the sequel, we must have ¥(X) = 0. For K; > 0 and K2 < 0 (to be justified later), it

turns out that
V' (y) = BBy — 1) K1y ! + Bo(B2 — 1) Kay™ 7,
is strictly increasing and has at most one root on [Y, X|. Hence, the condition ¥(Y) < 0 is necessary
and sufficient to guarantee that ¥ is negative on (X,Y). m
Boundary condition at v = 1. First of all, we have

Bo—1

L= A(F/(1))F + K (f/(1)) 77 + Ka(fF/(1) 5 (15)

Then, for h > 0, over the interval of time [t,¢ + h], the HIB is

1-b
C _
F(W;, M) = max By, | —— + e ""F(Wi4p, Mt+h)] ,

(¢,2)

1-5

so using Ito lemma for semi-martingales

B [ (<OF + (W — 2 ) Fi + 2Ry ) ]

B [ Fean].

As derived in Grossman and Zhou (1993)
2
Ey [Myyp — My | We = My) = \/;U |2[ Vi + O(h).

When h is small, v/A dominates h so in order for the Bellman equation to hold at W = M, we must
have
Fy(M,M)=0or 2y =0,

Fo(M,M) = 0 or 2§ = 0,and the HJB (7) is also valid for v = 1. Since the definition of the HJB

(p—r)f'(1)

involves a maximization over z, whenever feasible, it is optimal to choose z7 = —* 70

, instead of

2] =0.

Case 1: z{ > 0is optimal. We must have F»(M, M) = 0 or equivalently f'(1) = (1—5)f(1). Using
relationship (7) leads to

2 - 2 1—1
o <1ﬁb+<r+21b<“;7“) )A> (f'(l))_i+<r—ﬁl2;1<ua >)K1(f’(1))ﬁb




Using the definition of A, relationship (15) and the fact that 3; and [, are the roots of the quadratic
(9), it follows that

A(f) -1 _b-1

— 2 11
e G N
and finally since 3102 = —

b

Bo—1
+ BaF(f'(1)) 7
A(M_r)z, we find that
2 bo

B8 (AUF(D))7F = 1) = (1 =) (BuKa(£/(1)

Case 2: 2] =0 is optimal.

B1—1
b

4 RI(f1(1) %) .

From the HJB equation, we have

0F(1) = b(f;(l_))bb +rf(1). .

Boundary condition at u = «.

At W = aM, risky investment must be zero in order not to violate
the constraint in the near future with some positive probability. From relationship (13), we find that
z* —-r
A e
w A(f!

BLEL(f ()5 + BoEa (' (w) 5
bo* () + K (f/(w)

B1—
B1—1

b1+mewf¥J'

+ Ka(f'(0))

At u = «, we have

a=A(f(@)77 + Ki(f/(e))
and z} = 0 implies

b
’

A= (B — DK1(f'(a))

To summarize, the boundary conditions are:

aX = A+ K1 XP + Ky XP2

A= (B — 1K X 4 (B — 1)Ko X
Y = A+ K Y% 4 Ky Y

BiB2 (Y — A) = (1= b) (B K1Y + Bo KoY P2) if 2§ > 0
A= (B — 1)K YP + (B2 — 1) KoY P2 if 27 = 0.
Using the fact that Ag = —%, the system can be rewritten as stipulated in the core of the
paper. m
A.5. Proof of Proposition 1

We examine the condition U(Y') < 0 derived in A.4. When F5(M, M) = 0 we must have

(81 — DK YP + (B2 — 1) KoY < A,
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Since in this case

1—b—p15

A= (B —DEKY? 4 (B, — 1)KY? = —

(Ao —Y),

it follows that ¥ < Ag (Y > Ap) if b > 1(b < 1). When 2 = 0 is optimal, note that Ay > A(Ay < A)
whenever b > 1(b < 1), so in this case, we have Y > A(Y < A) whenever b>1(b<1).m

A.6.1. Proof of Existence and Uniqueness of (X,Y, K, K2) when 2] >0

We want to show existence and uniqueness for the following 4 by 4 non-linear system:

aX = A+ K X4 KyxP (16)

A = (B — 1)K XP 4 (By — 1)Ko X2 (17)

Y = A+EK Y%+ Ky™ (18)

BB (Y —4) = (1=b) (BE Y + BEY ™). (19)

Combining relationships (18) and (19) leads to
Br(1 = b= Bo) K1Y + Bo(1— b — B1) Y™ = 0.

Since both £1(1 — b — ) and (B2(1 — b — (1) are positive, it must be the case that K; and K» have

opposite signs. Then
Pl —b—-P1)Y — A
Br—02 b—1"

which implies that K; has the same sign as };f_f. Eliminating K7 and K3 from relationship (17) yields

4 B2 _
A= (52(51 —1D(1-b-p3) <§> —Bi(Be—1)(1 —b— B2) (if) > : Yy — A

KYPr =

b—1)(B — B2)
Since both Ba(B1 —1)(1 —b— 1) and —B1(B2 — 1)(1 —b— ) are positive, we find that =4 is indeed
positive. Hence K1 > 0 and Ky < 0and Y > A (Y < A) exactly when b > 1 (b < 1). Combining (16)
and (17) leads
aX = B K X 4 Ba Ky X2,

and eliminating K7 and K5 using relationships (18) and (19) yields

oX = fufn ((1 b ) (i)ﬁ S (1—b—fh) <§>ﬁ> = f)(_ﬁf W

> 1, we have

_ X
Setw—?

BiB2A((1—b— B)wl — (1 —b— Ba)w)

* =5 (B2(B1 = 1A = b= B1)wPr — B1(B2 — 1)(1 = b — f2)wh2)’
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and w is implicitly defined by

alb—=1)(f —f2) = —a (52(ﬂ1 — D)1 —-b—F)w” = B1(Ba—1) (1 —b— 52)wﬂ2)
s (10— =P~ — (1= b= )

Define the auxiliary function

[1,00) — R

a (Ba(Br — 1)1 —b— B1)aP — B1(B2 — 1)(1 — b — Ba)z2)

—B1B2 (1 —b— B1)zh 7t — (1 —b— o)1) — a(l — b)(B1 — Ba).

We want to show that ® has a unique root @w > 1. ® is continuously differentiable and ®(1) =
(1 —a)B1B2(B1 — B2) < 0. Then, we show that ®(1) < 0. A little bit of algebra yields

1

B1—1 B2—1
) =-m-b-p) (1) +am-b-m (1) —al-00 - ),

Define an auxiliary function

(I,00) — R
©: y = —Ba(1 = b= By + fi(1 —b— Ba)y™.
Again O is continuous and differentiable and li{n © = (1-0b)(81 — f2). Clearly, © is decreasing, which
implies that for all y in (1,00), O(y) < (1 —b)(81 — B2) and in particular ®(=) < 0. Then

1
' (r) = 7ﬂ152xﬂ2—2(a:€ - 1)¥(x),

where ¥(z) = — (81 — 1)(1 —=b— B1)2% P2 + (B — 1)(1 — b— f32). Since — (B —1)(1 —b—B1) > 0 and

B1 — B2 > 0, g is strictly increasing and
V(1)==Br =X =b— 1)+ (B2 —1)(1 —b— o).

Case 1: ¥(1) > 0. In this case, ¥ is strictly positive and therefore ® is decreasing on [1, é] and

increasing on [é, 00). Since @ is continuous and lim ® = co we conclude that ® has a unique root w
o0
1

€[5,00). =

Case 2: ¥(1) < 0. Then define * such that ¥(z*) =0, i.e.

:ﬁ:Cm—mrw—@Um%
G -ni-b-p))
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It follows that ¥ is negative on [1,z*] and positive on [z*, 00). Then we need to distinguish whether
x* is smaller or greater than é

1

Case 2.1: é < z*. In this case, ® is increasing on [1, é], decreasing on [E? a:*] and finally increasing

on [z*,00). Since ®(1) < 0, we conclude that ® has a unique root that belongs to [z*,cc).

Case 2.2: z* < é In this case, ® is increasing on [1,z*], then decreasing on [:L‘*, é] and finally
increasing on [i, 00). It remains to show that ®(z*) < 0 to conclude that ® has a unique root that

belongs to the interval [é, 00). Using the definition of 2*, one can show that

B8 s
- PR @) al - (- o)

(™) = (B — ) (B + b~ 1) (awl C D)t

Define an auxiliary function

(I,00) — R
2y = o — Dyt — Gy
Again = is continuous and differentiable and
- _ B2
='(y) = Bu(B — Dy™ P (ay — )-
P2 —1

B2 1

It follows that =’ is negative on [1, %} and then increasing on [m, E] Consequently, since

(B1—B2)(B1+b—1) > 0, it must be the case that ®(z*) < max {®(1), ®(2)}, so in particular ®(z*) < 0

and the desired result follows.

To summarize, there is a unique real number w > é such that ®(w) = 0. In addition, we have

®'(ww) > 0. From the definition of w, we have

1., 0 fl -
9 <w>£=—ﬁl%(<l—b—mwﬁl B (l-b- ).

Since @ > 1, we have (1 —b— 1)@’ =2 — (1 —b— ) < —(B1 — B2) < 0. Hence %—Z < 0. The existence
and uniqueness of X, Y, K1 and K»s follow. When b =1, Y = A and w is defined by
@ (B — a(py = Dw) =@ (B, — a(f — Dw). = (20)
A.6.2. Proof of Existence and Uniqueness of (X,Y, K, K2) when 2z} =0
We want to show existence and uniqueness for the following 4 by 4 non-linear system:
aX = A+ K X"+ KX
= (/1= DERXP + (B — 1) KX
= A+ K Y? 4 KYP

A = (51 — 1)K1Yﬁl + (62 — 1)K2Y’62.

33



First of all, notice that K7 and K2 must have opposite sign otherwise the function
®:y s (0 = DEy™ + (82— 1)Eay™,
is monotonic and therefore the equation ®(y) = A cannot have two distinct roots. Then we have
aX = (1K1 X 4 Ba Ko X2,

and since X > 0,7 > 0 and (B2 < 0, it must be the case that K; > 0 and K5 < 0. Then combining
relationships (23) and (24) yields

(81— B) K1Y = BoA— (62— 1Y
—(B1 = B) KoY = BiA— (B —1)Y.
Once again, define w = % > 1, and we have
(B1 = DA~ (B2 = DY) — (B2 = D(BA - (b — DY) = (51— )4
(B2A — (B — DY) — (1A — (B — DY )™ = (b1 — B2)(aX — A).

Eliminating Y leads to

Y A((B1 — B2)w™ P2 4 B1(By — Dw™ — Bo(B1 — 1)w™)
B a(B1 — 1) (B2 — 1)(wPt — w2) ’

and it follows that o is implicitly defined by

—afa(f = D@ + Bi(Br = @™ ™! + (B — B T
= —B(f1 — @™+ abi(f — N@™ + (B — B2) = 0.
Define
[1,00) — R
—afa(B1 — 1)y + Bi1(Be — Dy~ + (81 — fo)yr T2
—B2(B1 — Dyt + api(B2 — Dy” + a(Br — B2).
We want to show that there is a unique w such that ®(w) = 0. ¢ is continuously differentiable and

®(1) = 0. Then

D

¥(y) = —abiBe(B— Dy 4 5182 — V(B — Dy 2+ (B = Bo) i + o — 1)y T2

—Ba2(B1 — 1)(B2 — 1)y 72 + af1 Ba(fe — 1)y L.
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®'(1) = —f102(81 — B2)(a — 1) < 0. In addition, ®'(y) has the same sign as

—af1B2(Br — Dy P2 4 B1(B2 — 1) (B — Dy + (B1 — B2) 1 + o — 1)
—Bo(B1 —1)(B2 — Dy~ P + aB182(B2 — 1)y,

Then define

[l,00) — R
—aBBo(Br — 1)y P2+ B1(Ba — 1)(Br — L)y ™2 + (B — B2)Br + B2 — 1)
—Bo(B1 — 1)(B2 — D)y=P + aB1B2(Ba — 1)yt =P,

We know that ©(1) = —f162(81 — (2)(a — 1) < 0 and

0' () = afiBa(B1 — 1)(B2 — 1) (ay — 1)y Py =F2 — 1) > 0.

Hence, © is strictly decreasing on [1, é] and strictly increasing on [%,oo). Since 13;“ O = oo, we

conclude that © has a unique root y* in (1,00). Thus, ® is decreasing on [1,y*] and increasing on

[y*, 00) with lim ® = co. This shows that ® has a unique root @ > 1 and ®(w) > 0. From the
o0

definition of zo, we have

Ow

@,(w)% = 2(B1 — 1)@ — B1(B2 — )™ — (B1 — Ba).

Since z — Fo(B1 — 1)aP — (B — 1)z? — (B — B2) is decreasing and since @ > 1, we have (2(3; —
Dt — B1(B2 — 1)@ — (B1 — B2) < 0. Hence %—Z < 0. The existence and uniqueness of X, Y, K; and
K5 follow. m

A.7 Proof of Proposition 2

Case 1: 2z} > 0 is optimal. When « increases f(1) must decrease. Since f'(1) = (1 —b)f(1), we
deduce that when b < 1(b > 1), ‘?)—Z <0 (% > 0). Hence ﬁg—g > 0,b # 1. When b = 1, then

Y:A,SO%:O.T}IGD

0K,

da

Ba(1—b— ﬁl)Y)al
(B1—B2)(b—1)" 0
K, YP oy

= v A5, P+ (1= B)Y).

yoi+l (_51Klyﬂ1+

Recall that
(ﬁg — /Bl)KQX'@2 = *(ﬁl — 1)OZX + 5114 >0,
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so aX < ﬁﬁl 1141 and since Y < aX, it follows that Y < ﬁﬁl 1:41. Therefore 88];1 > 0. From

B1—1 Ba—1

w=A(fW)7 K (Fw) T+ K (Fw) T,

it follows that

(f'(w) ™" <z;1 oon-t Bi—1 =t Bp—1 "2‘1> of'(u)
B

(f (u)) b o_ ; K, (f’(u)) v ; Ky (f/(u)) b .

_ 0Ky g WO OKa B2
= Bia(f (u)) + 90 (f'(w)) :

B1—B2
b

The sign of the LHS is the same as % (f'(u)) + 8K2 and u +— % (f'(u )) “ 4 % achieves

its minimum at 1 and its maximum at v = «. Then

0K,y 0K oY
oy Bi—p2 —y—(4p) 2
oo + o oo

(A= (B — 1)K YP — (B — 1)K Y™).
Since A — (51 - 1)K1Yﬂ1 - (52 - 1)K2Yﬁ2 > 0, when b > 1, 8—Y > 0, so %Yﬁl—ﬁz + % > 0. In
addition, when b =1, %Yﬁl*& + 88](2 = 0. Hence, when b > 1, 8f( ) >0. Asc* = M (f'(u))” % if

b>1, 86% < 0. Conversely, when b < 1, we have %Yﬁl_@ + % < 0. Then

OK1 5,5,  0Ka X P 9y — N i
90 X T 9a T W -AYoa <K1X (Y(1=61) + BA) + Ko X2 (Y(1 ﬁ2)+ﬁ2A)>
X5 gy
- mgA(@X—Y)>O.

afaléw >0 on [, uy) and df (u) < 0 on (u},1]. We conclude

Hence, there exists u}, in («, 1), so that

that 22 < 0 on [o, u}) and 2 >0 on (u},1]. m

Case 2: 2] =0 is optimal. In this case, we have

)4 Y 0K, 0Ky
V- — K Y2 K, Y52 Zlybitl | T2y Bt
90 (BLEQYP! + Bo Ko Y7 ) — 50 T 50 5a
Recall that YV = ﬁlKlYﬂl + ﬁgKgYﬂQ, SO
0K, 0Ky
yh 2y B 0,
Oa oo
and therefore, 68Kl and 8122 must have opposite signs. Similarly
0X 0K 0K; 0X
X ta—="Lx0 4 Z2x0 | (ﬁlleﬁl + ByKp X2 22
da O« oo Oa

Since aX = 31 K1 X5 + B3 K2 X2, we find that

K K.
Oy ym  Oays x5,
fole} foJe}
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As in case 1, to determine the sign of f ( )| we need to investigate the sign of 8K1 (f'(w)) Do

Set y = (f’(u))b and define

[V,X] — R
] Y —s ‘9Klyﬁl 52+8K2

® is a continuous and differentiable function with ®(Y) = 0. Then, F' is monotonic and ®(X) > 0.

Hence, it must be the case that 8521 > (0 and aalgf < 0 and @ is positive on [Y, X]. We conclude that
8 *

G <0.m

A.8. Proof of Proposition 3

Note that

O (2N _ (T (ABRE + B3 Ky %) + KK — Ba)’y
By bo? (A+ Ky + KayP2)? '

Define the auxiliary function

[Y, X] — R
U: y — A(BPK1 + B2Koy?2 P + K1 Ko(B1 — (2)%y™.

WU is strictly increasing so it has at most one root. Since when v = 1, we have % > 0, then it must be
the case that either ¥ has no root and is strictly positive or ¥ has one root so it is first negative and

then positive. We examine the sign of W(Y').

Case 1. When 2] = 0 is optimal, since z, = 2] = 0, it must be the case that ¥ indeed has a root. %

is hump-shaped in u. m

Case 2. When Fy(M, M) = 0 is optimal, we have U(Y')

U(Y) = A(BIKL+ B KoY + KiKy (81 — B2)?Y

B % Y- A
_ m(A(gl+52+b—1)+(1—b—ﬂ2)(1—b_51) bl)

B1(Br — B2) Ky (1 B Y)
(1-b—02)(b—1) \ 0
since _(,@1+bi61)6(21{b—,82 % as 3132A = %(%)2 and (f1+b—1)(1—-b—p2) = %(v) . Hence ¥(Y')
is positive exactly if and only if
1 1
Y < ] Y > 5) whenever b > 1 (b < 1). (25)
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We can conclude that % is strictly increasing in u exactly when relationship (25) is satisfied otherwise
it is hump-shaped. A sufficient condition for ¥ to be always positive is § < r (6 > r) whenever b > 1
(b<1).

Case b=1. WehaveY = A and

T(Y) = Ki(B1—B)(AB1 + B2 — (B1 — Bo) K1 YP)
= ARG (5 4 oy — (82— ol - 1))

oh

2*

where @ is defined by relationship (20). § is strictly increasing (hump shaped) in u exactly when

U(Y)>0(<£0).m
A.9. Proof of Proposition 5

Let y = f/ (u)% As seen before in this Appendix
1oy _ Tt e
yoa  A— (61— 1)Ky — (B2 — 1) Koy

Since

« _H—T -1 -1 -1
7= (AZ/ — (B = K1y = (B2 — 1) Koy™ ) :

It follows that

0z N 0K, 51 _ K ,6’2 _ . _1)2 B2 dy

b = i (- DG G D2 (A (B - DR (5 1R 5
(Pt Ay 4 B2y ) + (B = Bo) (B — DKL G — (B — 1)Ky 92
B bo?y A— (B —1)K1yPr — (B2 — 1)sz52 '

The denominator of the above fraction is positive. In order to investigate the sign of its numerator,

let us define an auxiliary function

v,X] — R
©: y > A(B 9Ly 4 3,080y (B — By)((B1 — 1) K1982 — (B2 — 1) K 252),

© is continuous and differentiable and

6K1 _ 0Ky _5 _
O'(y) = —LiBA(5~ BZlJrT y .
«
Since 86[21 > 0 and 8812{2 < 0, © is strictly increasing and either ©(Y) > 0 or F achieves its minimum

at y* such that
OK1, .5, , OKa, 5,
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If © achieves its minimum at y*, then ©(y*) = (81 — F2)(y*) ™ aKl > 0, and in this case, © is positive
on [V, X]. Otherwise, ©’ is positive and © is strictly increasing. To prove that © is positive on [Y, X],
it is enough to show that ©(Y) > 0 or equivalently that z] is a decreasing function of o. There are

two cases.

Case 1: F5(M,M) =0 is optimal.  In this case

* w—=r
A=y (A — (b1 = DK YP — (B — 1)K2Yﬂz) .

Ifo=1,thenY = A and

O _ _p—r 09 ey g, 1) OK2 48
=t (- 5+ - 0725 <o

If b # 1, we have

« P B1f2(Y — A)
=t (255

Therefore

da bo? Y2 1-—b

oz _p—r (_MQA o )

Since 1 — b and aY have opposite signs, we conclude that 621 <0.m

Case 2: 2] = 0 is optimal.  In this case, 2] is independent of «, so % =0 and ©(Y) = 0. The

proof is complete. m

A.10 Representation of %,c* and W as Stochastic Processes

c* *

Process $;. For u in (a, 1), recall that u = G(%;) so denoting H = G~! we have

1 G// c
H'(u) = —~ and H'(u) = — #
G'(§7) (G"(5p)°
Applying Ito lemma, we find
ct o2 [ z 2
—t — / N "
d(Mt> H(ut)dUt+ 9 <Mt> H (ut)dt
ct ct c —r\2 [ ¢ 2 ct
G — 3+ e h - 3 () () ¢'Gh)
G'(35)
p—rcf
+ b Mtdw
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Then

G Lfp=r\N(\ G

7%?(Aﬂ) _AEET_>§ < bO’ ) <A4t) (; (Aﬂ)

1 -1 _ 2 * 1-p1
SINCEEY <<r—51(ﬁ12 (5

ﬁQ(ﬁQ _ 1) - 2 c* 1-02 c*
O i C = BTy A N

K
Ct

= (r— Z)M /(Mt)-

c; cr 1 (p—r)? w—r
d{ -+ ) =" — =+ ———)dt+ ——d .
(Mt> ) <(T AT ez A
x

For w in [0,1], we have

X(f'(30))~% and

So

< CM < % Define the geometric Brownian motion v such that vy =

1, (u—r)? por
dvszvs<(rA+lw2)ds+ - dwsg | .

. C* .
Then, a representation of the process §; is
i vpelt=Ut
M, X

where the processes L and U are increasing and continuous with Ly = Uy = 0 and

Ly = sup [logvs —Us]™
0<s<t
X _
U, = sup |log— —logvs — L
0<s<t Y

See Harrison (1985) p 22. m

Consumption and Wealth Processes. The wealth process is given by W; = MtG(]%) and let
H = G~ so that ¢} = MtH(%)

Case 1: F5(M, M) =0 is optimal. Using Ito lemma for semimartingales, we find that

Wi Wo r—0 (u—r)? w—r H'(1) M,
log H (-4 ) =log H | -2 ¢ - log %
©8 (Mt> °8 (MO>+( b T e YT 8 My

Note that % = ﬁ%) > 0. As explained in Grossman and Zhou (1993), the quantity log H (%) is

bounded from above by log H(1) = —logY and g/((f)) log (%) > 0 serves as a regulator to keep the

arithmetic Brownian motion from exceeding —logY . Define

Wo r—60 (u—r)? W= +
I} = loc H | — s +logY | .
¢ osgglg)t [og <M0> +( P T )s + by s T log
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Y |
It follows that M; = MoeG'(%) “and a representation of the wealth process and consumption process

is

Ll —0 —r)? -
W, = Mpe¥3'G (H <J\W;0) T >t+“bawt—lt>
0

—r)2 _
G = H(WO 7 e
My '

Case 2: 2] =0 is optimal. When wealth hits its maximum to date for the first time 79, we have

AW, = ( YWidt.

1
r——

Y
Upper Absorbing Barrier. If % <r, forallt > 19, Wy = My, ¢ = % and z; = 0. A representation
of the wealth and consumption is

r—60 , ( 77')2 —r
MyG (H <%) T )t+#’wwt) ,fort < 7

Wy =
1
Moe(“7)(t7m), for t > 19
r—0_ (n—r)> p—r
. H(%)e( b e e Wt for t < 79
G = Maelr=$)(E=70)
e, for t > 7.

Upper Reflecting Barrier. If r < %, wealth is driven down immediately after hitting its peak and

cannot exceed My. Consumption and wealth processes are given by

M,
¢ = YOUteL‘_Ut
vpelt=Ut
W, = MOG(tT).-
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