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Introduction

Objectives

@ There has been increasing interest in constructing the
genomic architecture of diseases, e.g. breast cancer

@ Genomic architecture based on DNA copy number alterations

@ CNA = variations (from two) in the copy number of DNA
@ Aim: characterize different subtypes of breast cancer by
examining the whole-genome copy number profiles based on
multiple samples
o Identifying genome aberrations for samples of the same disease
subtype
o Detecting differences across disease subtypes
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Figure : Simulated genome profile.
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Introduction

Literature review

Some current approaches to CNA detection are:

@ Olshen et al. (2004): Circular binary segmentation (most
widely used method)

e Guha et al. (2008): Bayesian hidden Markov model

@ Shah et al. (2007): Hierarchical hidden Markov models for
recurrent CNA

e Baladandayuthapani et al. (2010): Hierarchical Bayesian
random segmentation approach for multiple samples

@ Yau et al. (2011): mixture model that combines a hidden
Markov model for the locations (states), with a Dirichlet
process prior for the scales
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Definitions

o Let A={ty,tn,...,ty} be the index of probes.

For each array j, we assume that there are n; probes, which
are a subset of A.

@ For each sample j =1,...,J we have a partition {AJ,},LJ:1 of
Awith 8] = [ l)

o We define a common partition {Q4}K_; for all arrays as the
union of all partition segments over j =1,...,J. That is,
Qk = [Ck7 §k+1)_With {tl_ = << CKy1 = tn} =
U{ti=¢ <g < Cij-s-l = tn}.

@ Let gj indicate the disease subtype for sample j. Say
g € {1,2}.
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Semiparametric model

@ Let Yj be the log, ratio of probe t; at sample ;.

@ Sampling model: For i=1,...,njand j=1,...,J

L

K j
Yi=> tugllic Q)+ myl(ic Ay)+ez, (1)
k=1 =1

. iid
with €; ~ N(0, 0?)
e Thatis, Yj; arises from the sum of a population mean p g, a
sample-specific mean my;, plus a measurement error €;;.
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Semiparametric model

Priors:

e Denote by px = (k1, f1k2) the vector of population copy
number levels for subtypes 1 and 2

pe |GG, fork=1,...,K

G:(].—ﬂ')Go-Fﬂ'Gl

Grla, ™ DP(ar, Fy), r=0,1,

@ We define a spike and slab prior in two dimensions
Fo(ptk) = N(pka |0, 23)/ (pik1 = f12) and
F1(pi) = No(pex | 0, Ag)

e Introducing a latent indicator z = (k1 # Lk2)

i | 2k, Go, Gy % G,z " Ber(n), G, DP(a,F) (2)

Luis E. Nieto-Barajas
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Semiparametric model

Priors:

@ For the random effects

my; ' N(O,sz), with sz s IGa(ar, 5r).

@ For the sample variance:
2~ 1G
o ~1Ga(ay, Bs)-
@ For the precision parameter of the Dirichlet processes:
iid
a, ~ Ga(aqn, ba),

for r=0,1.

Luis E. Nieto-Barajas



Contents Introduction Inference

Results

References

Semiparametric model

Posteriors:

o We update jointly (g, zx)

Luis E. Nieto-Barajas



Semiparametric model

Posteriors:
e We update jointly (g, zx)

e Posterior conditional of mj;0, 02 and Tf are conditionally
conjugate

Luis E. Nieto-Barajas



Semiparametric model

Posteriors:
e We update jointly (g, zx)
@ Posterior conditional of my;0, 03 and Tf are conditionally
conjugate
@ Posterior conditional of a, is not conditionally conjugate and
requires a MH step

Luis E. Nieto-Barajas



Semiparametric model

Posteriors:
e We update jointly (g, zx)
@ Posterior conditional of my;0, 03 and Tf are conditionally
conjugate
@ Posterior conditional of a, is not conditionally conjugate and
requires a MH step

@ Also implement a re-sampling step for iy

Luis E. Nieto-Barajas
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Inference

Calling aberrations

o Key parameters of interest are: py = (uk1, pik2) and zx, and
mij

o Calling CNA across samples: compute
P(Jpk1| > a1 | data) and P(|uke| > co | data),

for values of ¢; and ¢ to achieve a certain FDR

o Calling differential CNA across disease subtypes: compute

P({luxa] = cror |pa| > o} & {zm = 1} | data),

@ Sample specific: segment-specific mean copy number is

(Nk,gj + my ;)
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Simulated Data

@ n = 1,000 probes, with locations from 1 to n

@ For group g = 1, we took 4 regions of CNA around
{200, 400, 600, 800}, alternating gain and loss

e Group g = 2 contains only two regions of CNA at {600, 800},
(gain and loss)

@ Aberration widths ~ Ga(2.5,0.05) (accommodates large and
short segments)

@ We took level zero for the neutral zones and a positive /
negative random value Un(0.1,0.25) for the gain/loss zones

@ We added random errors N(0, 0%) to the mean profiles, with
02 € {0.1,0.3} to show low and high levels of noise in the
log?2 ratios
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Simulated Data

We generated 100 profiles

@ To test our model under different conditions, only a
percentage w100% of the 100 profiles presented the shared
aberrations

@ The remainder (1 —w)100% were all neutral, showing only
white noise around zero.

e We took three prevalence levels, w € {1,0.6,0.3}

@ Therefore, we had a total of 6 different scenarios: (3
prevalence levels x 2 noise levels).

Luis E. Nieto-Barajas
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Figure : Simulated genome profile.
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e Prior specifications: A3 = A2 = \3 = 100, (v, 8a) = (1,1),
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S-s partitions {AJ,} were obtained from CBS with o = 0.01
Prior specifications: A2 = A2 = \2 = 100, (aa, 82) = (1,1),
O-S' (O‘U?BU) = (27 1)

@ The crucial parameter 7'J-2 (variance of the s-s r.e.)

o Large sz = s-s effects capture most of the variability of the
data, leaving little for the population mean

e Small 7'j2 = variability of the data is shared between the
population effects and the s-s effects

We took (o, 8r) = (3,0.01)
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1,000, keeping every other draw
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Simulated Data

@ S-s partitions {AJ,} were obtained from CBS with o = 0.01

e Prior specifications: A3 = A2 = \3 = 100, (v, 8a) = (1,1),
O-S' (O‘U?BU) = (27 1)

@ The crucial parameter 7'J-2 (variance of the s-s r.e.)

o Large 7‘J-2 = s-s effects capture most of the variability of the
data, leaving little for the population mean

e Small 7'j2 = variability of the data is shared between the
population effects and the s-s effects

We took (o, 8r) = (3,0.01)

@ Ran Gibbs sampler for 10,000 iterations with a burn-in of
1,000, keeping every other draw

o We call differential CNAs with a FDR = 5% and thresholds
¢ = ¢ = ¢ with ¢ = 0.10,0.05,0.03 for the 100%, 60% and
30% prevalence levels

Luis E. Nieto-Barajas
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Breast Cancer Data

UTMDACC conducted arrayCGH experiments using samples
from 122 patients

@ Tumor samples of 122 patientes are: 60 - ER+, 11 - PR+,
and 51 - TN

e Concentrated on comparing ER+ and TN (111 samples in
total)

We split the data on chromosomes

Sample-specific partitions {AJ,} were obtained from CBS with
a=0.01

@ Same prior specifications as in simulated data

o We call differential CNA with a FDR = 5% with thresholds
c1 = ¢ = 0.2 for all chromosomes

Luis E. Nieto-Barajas
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Breast Cancer Data

@ We found CNA differences between the two cancer subtypes
in 16 of the 23 chromosomes

@ Predominantly in chromosomes 3 =7, 9 — 12, 14 — 19, and 23
@ Chromosome 5 is confirmatory

@ Chromosome 15 is a new finding

Luis E. Nieto-Barajas
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Figure : Differential CNA probabilities for all chromosomes.
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