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Objectives

There has been increasing interest in constructing the
genomic architecture of diseases, e.g. breast cancer

Genomic architecture based on DNA copy number alterations

CNA = variations (from two) in the copy number of DNA

Aim: characterize different subtypes of breast cancer by
examining the whole-genome copy number profiles based on
multiple samples

Identifying genome aberrations for samples of the same disease
subtype
Detecting differences across disease subtypes
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Example
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Figure : Simulated genome profile.
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Literature review

Some current approaches to CNA detection are:

Olshen et al. (2004): Circular binary segmentation (most
widely used method)

Guha et al. (2008): Bayesian hidden Markov model

Shah et al. (2007): Hierarchical hidden Markov models for
recurrent CNA

Baladandayuthapani et al. (2010): Hierarchical Bayesian
random segmentation approach for multiple samples

Yau et al. (2011): mixture model that combines a hidden
Markov model for the locations (states), with a Dirichlet
process prior for the scales
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Definitions

Let A = {t1, t2, . . . , tn} be the index of probes.
For each array j , we assume that there are nj probes, which
are a subset of A.

For each sample j = 1, . . . , J we have a partition {∆j
l}

Lj
l=1 of

A with ∆j
l = [c j

l , c
j
l+1).

We define a common partition {Ωk}Kk=1 for all arrays as the
union of all partition segments over j = 1, . . . , J. That is,
Ωk = [ck , ck+1) with {t1 = c1 < c2 · · · < cK+1 = tn} =
∪j{t1 = c j

1 < c j
2 · · · < c j

Lj+1 = tn}.
Let gj indicate the disease subtype for sample j . Say
gj ∈ {1, 2}.
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Semiparametric model

Let Yij be the log2 ratio of probe ti at sample j .

Sampling model: For i = 1, . . . , nj and j = 1, . . . , J

Yij =
K∑

k=1

µk,gj I (i ∈ Ωk) +

Lj∑
l=1

mlj I (i ∈ ∆lj) + εij , (1)

with εij
iid∼ N(0, σ2ε )

That is, Yij arises from the sum of a population mean µk,gj , a
sample-specific mean mlj , plus a measurement error εij .
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Semiparametric model

Priors:

Denote by µk = (µk1, µk2) the vector of population copy
number levels for subtypes 1 and 2

µk | G
ind∼ G , for k = 1, . . . ,K

G = (1− π)G0 + πG1

Gr |ar
ind∼ DP(ar ,Fr ), r = 0, 1,

We define a spike and slab prior in two dimensions
F0(µk) = N(µk1 | 0, λ20)I (µk1 = µk2) and
F1(µk) = N2(µk | 0,Λ1)

Introducing a latent indicator zk = I (µk1 6= µk2)

µk | zk ,G0,G1
ind∼ Gzk , zk

ind∼ Ber(π), Gr
ind∼ DP(ar ,Fr ) (2)
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Semiparametric model

Priors:

For the random effects

mkj
ind∼ N(0, τ2j ), with τ2j

iid∼ IGa(ατ , βτ ).

For the sample variance:

σ2ε ∼ IGa(ασ, βσ).

For the precision parameter of the Dirichlet processes:

ar
iid∼ Ga(aα, bα),

for r = 0, 1.
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Semiparametric model

Posteriors:

We update jointly (µk , zk)

Posterior conditional of mlj0, σ2ε and τ2j are conditionally
conjugate

Posterior conditional of ar is not conditionally conjugate and
requires a MH step

Also implement a re-sampling step for µk
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Calling aberrations

Key parameters of interest are: µk = (µk1, µk2) and zk , and
mlj

Calling CNA across samples: compute

P(|µk1| ≥ c1 | data) and P(|µk2| ≥ c2 | data),

for values of c1 and c2 to achieve a certain FDR

Calling differential CNA across disease subtypes: compute

P( {|µk1| ≥ c1 or |µk2| ≥ c2}& {zk = 1} | data ),

Sample specific: segment-specific mean copy number is

(µk,gj + ml ,j)
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Simulated Data

n = 1, 000 probes, with locations from 1 to n

For group g = 1, we took 4 regions of CNA around
{200, 400, 600, 800}, alternating gain and loss

Group g = 2 contains only two regions of CNA at {600, 800},
(gain and loss)

Aberration widths ∼ Ga(2.5, 0.05) (accommodates large and
short segments)

We took level zero for the neutral zones and a positive /
negative random value Un(0.1, 0.25) for the gain/loss zones

We added random errors N(0, σ2) to the mean profiles, with
σ2 ∈ {0.1, 0.3} to show low and high levels of noise in the
log2 ratios
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Simulated Data

We generated 100 profiles

To test our model under different conditions, only a
percentage ω100% of the 100 profiles presented the shared
aberrations

The remainder (1− ω)100% were all neutral, showing only
white noise around zero.

We took three prevalence levels, ω ∈ {1, 0.6, 0.3}
Therefore, we had a total of 6 different scenarios: (3
prevalence levels × 2 noise levels).
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Simulated Data
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Figure : Simulated genome profile.
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Simulated Data

S-s partitions {∆j
l} were obtained from CBS with α = 0.01

Prior specifications: λ20 = λ21 = λ22 = 100, (αa, βa) = (1, 1),
σ2ε , (ασ, βσ) = (2, 1)

The crucial parameter τ2j (variance of the s-s r.e.)

Large τ 2j ⇒ s-s effects capture most of the variability of the
data, leaving little for the population mean
Small τ 2j ⇒ variability of the data is shared between the
population effects and the s-s effects

We took (ατ , βτ ) = (3, 0.01)

Ran Gibbs sampler for 10,000 iterations with a burn-in of
1,000, keeping every other draw

We call differential CNAs with a FDR = 5% and thresholds
c1 = c2 = c with c = 0.10, 0.05, 0.03 for the 100%, 60% and
30% prevalence levels
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Breast Cancer Data

UTMDACC conducted arrayCGH experiments using samples
from 122 patients

Tumor samples of 122 patientes are: 60 - ER+, 11 - PR+,
and 51 - TN

Concentrated on comparing ER+ and TN (111 samples in
total)

We split the data on chromosomes

Sample-specific partitions {∆j
l} were obtained from CBS with

α = 0.01

Same prior specifications as in simulated data

We call differential CNA with a FDR = 5% with thresholds
c1 = c2 = 0.2 for all chromosomes
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Breast Cancer Data

We found CNA differences between the two cancer subtypes
in 16 of the 23 chromosomes

Predominantly in chromosomes 3 –7, 9 – 12, 14 – 19, and 23

Chromosome 5 is confirmatory

Chromosome 15 is a new finding
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Breast Cancer Data
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Figure : Differential CNA probabilities for all chromosomes.
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