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viii Preface

associated expectations and variances, while in statistics one Or two CoUIses
on statistical methods, including an introduction to linear models, should be
adequate. The mathematical background required is standard caleulus and a
passing acquaintance with matrix algebra, but little more.

Most of the material in the book can be covered in a course of about sixty
one-hour lectures. Shorter courses could be based on Chapters.2 to 6, which
contain what we regard as core material, although Sections 3.3, 4.7, and 6.7 y
might be omitted. The instructor could then select topics from subsequent ¥ ﬁ@mm—.ﬁm s.ﬂm
chapters. These later chapters can largely be taught independently of each
other, although Section 9.3 assumes Section 8.2 has previously been covered
and Section 9.6 requires familiarity with much of the material in Chapters 6
and 7. Fach chapter, except the first, includes a selection of exercises of

varying dificulty. Some of these augrent material in the text, but the purpose ¥ 1 Iobroduction . i 1
of most is to belp the student consolidate ideas and results. ] 1.1 Background e i 1
| 1.2 Plan of the Bo0K. i iricurencareeerneriesecssse o sereacsene e e smrenesseene 3
Dnrﬁnuc:wmQMmgmﬁﬂm . cod 1.3 Notation and terminology 4
We are grateful to a number &f friends and colleagues who have commented 9 Properties of estimat
on eartior versions of parts of the book, and whose comments have led to . o MM»U HMm wp. estImAators .. i, S 7
wB.UHOAmemUHm. In OW.NHU...:QH “_.OU Dave OO.d.mﬁdu John mwﬂ.ﬁwﬂ Peter Hum._H_.m» Jim . 5 - M.O U Mn.v ﬁMhMOup ............................................................................... 7
Lindsey, and Martin Ridout provided us with useful advice, an djor pleces | a.m Oa nwmm.w B85 weemrenerrnnnrmnnnrn s aa s reranan ke A arn st nnnnsarannntnrnnan 7
of Genstat or GLIM code, and Chris Gilligan supplied one of the data sefs. C 3 m 4 MW SLSLEDEY oo 8
Jim Dickey made many useful comments on Chapters 6 and 7 and Anthomy 1 25 S c.mm%nn% : 10
Davison gave helpful suggestions that mproved Section 9.5. An anonymous m 6 B Hmbwﬁ.p.m ..... . wm T T 18
roviewer rade maoy helpful points thronghout the book. Kay Penny was i > Omwmﬁmw i &Muﬁ es O &m.dddﬁﬂowm .......................................... 27
HmmHuObm&uHm for the excellent figures in the first eight chapters. _ i , Mm Pr ‘OMV cle s . aww.ou.mﬁd L 3%
Mot of the text, in verious drafts, was expersly typed by Liz Ostrowski, | > Sroblems with MVUEs 338
Mavis Swain, and Louise Thomson. We are e ciremely grateful to them for o.Ho = .m.H,% ...... e 34
their eficiency and patience. : 2. HETCISES 1 aeeesirnesranemnaartaranssemeas s sstanses st sssaste s e smesatesans sm e asimneans 34
Large parts of the book have evclved from courses that we have taught 3 Maxim likelihood . .
over a number of years. Some of the Exercises and Examples have been in our 31 Hwﬁnhw Qn.m ihood and other methods of estimation ....... 40
notes for so long that we have lost track of their original sources. We therefore m.w M rocu Homwga ....... ST s e 40
scinowledge the debt we owe to the anonymous originators o £ these problers. : w.w Swu%wgﬂp e Mo mm&ﬁmﬁow ....... s TR s 40
Finally, we are each grateful to our families for their patience and _ m. 4 Oth e Hwﬂ,m%mb - ﬁa_mmumx.ﬁm of masxdimum likelihood estimation. 54
understanding throughout the gestation perio d of the book. m.m meommmwwww ods of estImation ... mm
s, . - 3.6 Mxmuommw 64
Wuu . 4 Hypothesis testing ... T1
4.1 Introduction and some basic definitions ...ocvvecrviciiiiiii. 71
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, EEN 0] 01w el HOUSRUN OO UURUP USROS 71
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34 2. Properties of estimators

Qur single observation, X, is certainly coraplete since the Poisson distribution is
2 member of the one-parameter exponential family, and sufficient, so if we can find
a function of X which is unbiased, then it must be 2n MVUE.

Consider
¥ = (-1)%,
e Qﬂmlm _ o f =
By] =S — 3 OO
=0 e 2==0 :
= wlmmim - mlwm.

Hence ﬁlbk is unbiased, and is, in fact, an MVUE. However, it does not seem
sensible since (1) =2l and 0 < e ¥ < 1forall0 <@ <co. O

This example has been discussed at length in the literature. Meeden (1987},
for instance, argues that it is the concept of unbiasedness itself which cauges
the problem, although Lehmarn (1983b) suggests that it is ‘inadequacy of
information’ in a certain sense which is to blame.

Although the example, and other aspects of unbiasedness, gives cause for
concern, it does not detract from the general usefulness of MVUEs. It does,
however, show that some caution may be necessary in their use.

2.9 Summary

In this chapter we have looked at a number of desirable properties of esti-
mators. A dominant theme is the search for MVUEs. We have defined
unbiasedness, and have seen how efficiency can be defined in terms of a lower
bound to the variance of unbiased estimators. A condition for attainability of
the lower bound was given.

The idea of sufficiency was then introduced. This concept is important
throughout statistics and will appear prominently in several of the subse-
quent chapters. We gave results which enable us to find sufficient, and more
particularly minimal sufficient, statistics. The role of sufficient stabistics in
finding MVUEs was then discussed.

Another important idea, which will reappear frequently in later chapters, is
that of exponential families of distributions. These distributions were defined,
and their relationship to the existence of sufficient statistics was discussed.
Completeness was then defined, leading us finally to a strategy for finding
MVTEs based on functions of complete sufficient statistics.

Tn the last section, two examples illustrated the fact that searching for
MV UEs, although ofter useful, can be problematical.

2.10 Exercises

Exercise 2.1: Given that X1, Xa,...,X» Is a random sample fom U[0,6], find
the p.d.f. of Xy, the largest of the X,

Show that 2X and (n-+1)X(s)/n are both consistent estimators of & and compare
their variances.
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Exercise 2.2: Suppose that H1,8: are independent unbiased estimators of a
parameter £, with variances o.mqu respectively, and 4= qu + wum,uu where k1, k2
are constants. Find the values of k1, k2 for which § is unbiased and has the smallest
possible variance.

Exercise 2.3: For a random sample X1, X2,...,Xn from a gamma distribution
with p.d.f flzx; 8) = Tm.wﬂv e~*/% x> 0, investigate whether § = X/4 is unbi-
ased and consistent. [You may quote expressions for the mean and variance of this
distribution, rather than derive them.]

Exercise 2.4: mﬁvvo,mm f is an estimator for 6 with probability function Huim =
8] = {n—1)/n and Pr[f = 6 +n] = 1/n {and no other values of 6 zre possible); show
tkat @ is consistent but that bias (8) 4 0 as n — co.

Exercise 2.5: Find the Cramér-Rao lower bound to the variance of unbiased
estimagtors of 8, given a random sample X3, Xz, ..., Xn from the distribution with
density

Fla; 8) = F P ap(me™® ) woc <z < ol

Exercise 2.6: In the case of a random sample X1, Xa,..., X, from the Bernouilli
distribution with probability function

fl ) =81 -)"%, =z=0,1, 0<6<1,

mE&_d%&mmwmdﬁmiﬁmgmyomo:wmmegoomoH.oﬂvmaﬁmm,&vmgmwﬁgogﬂm\al
Rao bound is attained for .
(a) estimators of 8;

{b) estimators of §°.
o

Exercise 2.7: Suppose that X3, Xs,..., X, form & random sample from the
Rayleigh distribution with p.d.f.

Determine the Cramér-Rao lower bound for § when 6 is (a) ¢° (b) o, and
demonstrate whether or not the lower bound is astainable in the two cases.

Exercise 2.8: Suppose X1, Xz,..., Xn form a random sample from the normal
distribution with unknown variance ¢, Show that the sample vatance

§* =30 - X fn -1

i=1

does not attain the Cramér~Rao lower bound for finite n, but does so as n tends to
infinity. For what value of ¢ does the estimator

"
of ¢~ have the smallest mean square error?
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v

Fxercise 2.9: Suppose that § is an estimator for awm pazameter #, and that
B(f) — 0 = b(9). Show that Var(§) = T +m§<m£ I7*, where Iy is Fisher's
information.
Exercise 2.10: Suppose that X1,Xz2,...,Xa form a random sample from
N(8, o%) where ¢* is known. Use Lemma. 2.1 to show that Jp = n/o”.
Txercise 2.11: A random sample of size n is available from the disizibution with
density .
A 8?.0. + “_.u AT
famn={ xrz ¢ @ 2%
0, z < 0.

Tor what functions of A do there exist unbiased estimators which attain the
Cramér—Rao lower bound? Show that Fisher’s information is given by

IO = 2n{\* +6) +6)
(A2

and verify, for one of the above functions, that it possesses an unbiased estimator

attaining the Cramér-Rac lower bound.

Exercise 2.12: A random sample, X1, X2, ..., Xn, of n observations is taken from

the two-parameter Weibull distribution with p.d.f. -

hﬁ@:&ﬁ%ﬂmLQ@AlmmvuT >0, a>0, f>9

et
Assuming J is known, find a single function of X1,X2,..., Xn which is sufficient
for o :
Snow, however, that if & is known there is no single function of X1, Xz2,..., X
which is sufficient for 5. :
Exercise 2.13: Find minimal sufficient statistics for samples of size n from

(a) the uniform distribution on [§ - W: 8 -+ wm_
(b) the uniform distribution on [—4,6].

Txercise 2.14: Observations made on r.vs X1, X2,..., Xn are independent and
identically distributed, each with a beta distribution whose p.d.f. is ,

1

a1 BRLYCLS
Emmo“u_mup.. 1-2z)", O0<=z<l,

fla o, fB) =

where <, 3 are positive parameters, and B(w, £) is a beta function. Write down
minimal sufficient statistics for (@, 3)-

Exercise 2.15: Let X, X2,..., X denote a random sample from a distribution
whose p.d.f is

Flz®), a<z<bo),
o r<aorz> b

_where ¢ is a constant, 5(§) is a fixed function of 8, and 8 is a parameter fo be
estimated. Show that if a single sufficient statistic exists then it must be Xn)y, and
that a necessary condition for Xy to be a sufficiens statistic is that f(w; 6) =
g(z)h{8), where g(z) does not depend on &, and h(8) does not depend on z.
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Exercise 2.16: Show that the Rayleigh distribution with p.d.f.
Fla; ) = wmﬁ?%h? >0, §>0,
belongs to the ome-parameter exponential family of distributions, and deduce a

minimal sufficient statistic, T, for 4, based on a random saraple X1, X, ... i

Exercise 2.17: Suppose that X1, Xz,...,Xn are independent r.vs, each with the
inverse Gaussian distribution whose p.d.f. is

F(Es 01,02) = 1 5oz exp A ~81(z ~ 8:)° W .

Bz 203

Show that this distribution is & member of the two-parameter exporectial family
of distributions. Hence, or otherwise, find 2 minimal sufficient statistic for {61, 62).
Find also a minimal gufficient statistic
(a) for 2 when 8 is lmowx;
(b} for 8; when &> is known. .
Fxercise 2.18: Random variables X; and X are independently and identically
distribused with p.d.f Ae~*, z > 0. Given that the p.df of Z = X, 4 Xa is

Aze™?*, show that the distribution of X conditional upon 2 = 2z is the uniform
distribution on (0, z). Prove that the MVUE of

PriX: > 1 =e""
based on observations X; and Xz Is given by

- 0 fz<l,
=127l s

z

Exercise 2.16: The r.vs X1, X2, ..., Xn are independent with cormon probabil-
ity density #z°~* {0 < = < 1), where the parameter § > 0 is unknown.

(1) Find a sufficient statistic for 8.

(i) Given that —log X1 is an unbiased estimator of 677, find another unbiased
estimator with smaller variance.

Exercise 2.20: Consider a binomial experiment with probability of success p in
which m (fixed) trials are conducted, resulting in R successes; a further set of trials
is then conducted until s (fixed) further successes have occurred. The number of
trials necessary in the second set is a r.v., V. By considering the function U(R, N} =
B/m~(s—1)/(N—1) show that (R, N are jointly sufficient for p, but nct complete.
Exercise 2.21: Let X1, X2,..., Xn be n independent observations from an expo-
nential distribution, with density

Flo; ) =67 >0, >0
Consider the following estimators of 8; T3y = L. Xi/n, Tp = 2 Xi/{n + 1), and

Ty = nY, where ¥ = Min{X;, Xa,...,Xx). Which of these estimators are unbiased,
which are functions of sufficient statistics and which are consistent?
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Discuss the relative merits of 11, T3, and Tz with regard to the above and any
other relevant criteria.

Exercise 2.22: A random sample X3, X7, ..., X, is selected from N(u, 1). Write
down the joint distribution of Xy and ¥ = X2 4+ 4 X5 hence or otherwise obtain
the distribution of X conditional upon the observed value Z of the sarple mean X.

Let a r.v. W take the value 1 if X1 is less than 0, and the wvalue 0 if X
exceeds 0. If the parameter u is unknown, show, by using W or otherwise, that
P(~X/m//n— 1) is an efficient estimator of &{—u), where the function & is the
c.d.f. of a r.v. distributed as N(0,1).

Exercise 2.23: A random sample X, Xo,..., X, is obtained from a truncated
Poisson distribution with probability function

—2 z

g A
PR I AN w1 9. .
Fam X =ome 2= L2 A0

Fore=1,2,...,n, ar.v. Z; is defined by

_ 5% Xz
&= 0, Xi=1

Show that 3.7, Zi/n is an unbiased estimator of A\ witk efficiency

=l

e/ - {25 -

Explain briefly how you could construct a more efficient unbissed estimator.
Does there exist an unbiased estimator with efficiency 17

Exercise 2.24: Observations are made of the value of 2 r.v. ¥ under two exper-
imental conditions and in association with various values of a variable z. For each
condition the model proposed for the dependence of ¥ on z is one of linear regres-
sion; observations (yi;,245), § = 1,2,...,7n; are made under condition i{ = 1,2),
and the roodel may be written as

Yi o= oy + Bi{mi; — T0) + iy
(=12 j=12...,n) where & = (1/n:) 307%, =, and the ey are independent
N{0,e*) 1.vs. Find expressions for the minimum-variance unbiased estimators of
o, @z, B, Fo, and o, and identify their joint distribution.
Exercise 2.25: A rardom sample of size n{n > 3) is available from the
exponential distribution with density

L [xeTm oz,
iﬁzlﬁo, z <0,

Find the minimum-variance unbiased estimator of A, and show that the ratio of its
. variance to that given by the Cramér-Rao lower bound is n/(n — 2). Why would
you expect this ratio to be greater than 17

Exercise 2.26: The r.v. X has » discrete distribution such that PriX =] = 9=*
for r = 1,2,...,6, where @ is an unknown positive integer. Show that Y, the max-
mum of a sample of n independent cbservations of X, is a complete sufficient

2.10. Exercises 39

statistic for § and hence verify that [¥YF' — (¥ — 1M )/~ (¥ -1)" is a
minimum-variance unbiased estimator for 6.

Exercise 2.27: Let X1, Xz,..., X be a random sample from a Poisson distribu-
tion with mean u > 0. Find the minimum-veriance unbiased estimator for

PrX < 1] = (1 + u)e™.

Does this estimator attain the Cramér-Rao lower bound?
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widespread use in statistical inference. We have seen that this popularity is
justified by the general good properties of MLEs. However, like cther inference
“procedures, there are circumstances where MLEs are less than ideal.

The final section of this chapter briefiy describes four alternative methods
of estimation which may be of use when MLEs are not satisfactory, or for
finding initial values in an iterative ML scheme. All these alternative methods
remain within the classical framework of inference, based on sampling distri-
butions, and there are others within this framework, such as methods based
on empirical transforms—see, for example, Morgan {2000, Section 5.7.4).
Other methods outside this framework will be discussed in subsequent chap-
sers. In particular, estimators based on decision theory and on the Bayesian
approach are introduced in Chapters 6 and 7. Robust estimation and estima-
tion based on computationally intensive methods are described in Chapters 8
and 9 respectively.

3.6 Exercises

Exercise 3.1: Find the MLE for ¢ in the following cases, where in each case we
have available & random sample X1, Xa, ..., X, from the relevant distribution.

(a) The geometric distribution with probability function §(1 ~8)""}, z=1,2,....
(b) The uniform distribution on the interval (—6/2,6/2).
(¢) The gamma distribution with parameters 2 and #, that is, with p.d.f

f@l6)= gae™, z>0

{(d) The Poisson distribution with mean 6.

Exercise 8.2: Copsider the situation in Exercise 3.1(c) when there are ny obser-
vations, X1, Xz, ..., Xa,, whose values are given, and are all <a, for some constant
a > 0. In addition it is known. that ng = (n — ny) observations have values > «, but
their exact values are unknown. Write down the likelihood fumction in this case, and
find an equation whose solution will give the MLE for 8.

Exercise 3.3: Three independent binomial experiments are conducted with
n1, 7, N3 trials and z1,z2, 23 are the respective numbers of successes observed.

{a) Suppose that the probability of success, p, is the same in each trial. Find the
MLE of p, based on all three trials.

{b) Now suppose that the probability of success varies between trials, and &s a,
o + 3, o respectively. Find MLEs of « and 3, based on all three trials.

Fercise 3.4: The r.v. X has an exporential distribution with p.d.f. f(=z; 8} =
e, & > 0. Fer a fixed positive constant T, show that E[X|X > r] =7+ 1/6.
Exercise 3.5: Suppose that X1, X7,...,Xn form a random sample from a distri-
bution belonging to the k-parameter exponential family. Show that the E-step in
the EM algorithm reduces to finding the conditional expectations of the k minimal
sufficient statistics, and then substituting these expected values into the complete
log-likelihood function.

Exercise 3.6: Consider the complete log-likelibood in Example 3.2 in Section 3.2.
Using Exercise 3.5, or otherwise, show that i is a linear function of the unknown
Valles Tmdl, TmA2s -« Lne
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Exercise 3.7: For X1,Xz,..., Xn ~ N(i,o*) with both z and ¢ unknown, dif-

ferentiate the log-likelithood with respect to i and ¢, and hence show that the MLE
of o is the square root of the MLE for 5* found in Example 3.5.

Exercise 3.8: Let X;,X:,...,X. be a random sample from the distribution

having p.d.f.

1

Flmd) =1 62

9, elsewhere.

m%mﬂi?ux_muq > .m.u; fo > Od

Find the MLEs of 81 and 82,

Exercise 3.9: Observations are made on independent r.vs Xi; where Xy ~
N{ps,9), 7 = 1,2; ¢ = 1,...,n Write down the likelihood function for £,
By Heye ooy pin. Obtain the MLEs of the parameters w1, ..., #» and show that the
MLE § of 6 s (1/4n)-3] ZF, where Z; = X —~ Xiz. Obtain the expectatior. and. vari-
wu.ow of J; hence or otherwise prove that, as n — oc,§ is not a consistent estimator
or 6.

Exercise 3.10: The rovs X1, Xa,..., Xm, X1, ..., Xn are independertly, nor-
mally distributed with unknown mean p and variance 1. After X, Xs, ..., Xp, have
been observed it is decided to record only the signs of Xmw1,..., Xn. Obtain the
equation satisfied by the MLE 4 of u.

Exercise 3.11: A random sample cf n observations is taken on a r.v. X which
has a Poisson &m&&wﬁmmoa with mean #. Suppose that ¢ = 6°. Find the MLE, awu
for ¢, and show that ¢ is a biased, but consistens, estimator. (Note that B[X* =
* + 66° 4 767 + 4.)

Exercise 3.12: Let X1,Xs,...,X. be a random sample from the distribution
having p.d.f.

2z
%ﬁimuﬁﬁwﬂu 0<z<d,
o, otherwise.

Determine the MLE of the median of this distribution and show that this estimator
is sufficient. Is it also minimal sufficient?

Exercise 3.13: Let X1, X»,...,Xn be a random sample from the uniform distri-
bution Ul = v3e, u + v3o]. Find the MLEs of 4 and o.

Exercise 3.14: A random sample of size n is obtained from a bivariate normal
distribution with density function

Fla,y) = (2r)7 (1 - 22

o0 | =g (o ) = 2000 = )y = ) + (v = )}

—-oa < %Y <00,
Write down the likelihood function and show that its logarithm may be written as

£ = constant — nln{e”) — Inln(l — 5%

— o™ 0= Y (5 = 2pe)

o+ (&= ) = 20(F — ) (F — 2) + (F — w2,
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.

where

ansMas g= ..MU?

d==1

g=iY-or, d=13 -9,

i=1

2= = 3w~ Bl - )
i=1

Hence obtain the MLEs of 1, 42,0 and p.

Exercise 3.15: Consider the bivariate normal distribution in Exercise 3.14, mod-
ified so that u, po take the common value g, but X, ¥ now have different mgoq,ﬂu
variances o7, 03. The part of the log-likelihood mﬁpnﬂon which involves px may be
written as

2 o = . — P
ml..nscl VLM% E . _ 2p(z: ~ w){ys E.T@ &E Q

o107
i=1 1

Show that the MLE of 1 is

Z(oF = ou2) + (o ~ o12)
{of + 03 — 20u2)

=2

7

where o2 = poioa, and p is known. o ,. ) .
Supposethat =2, = 1, of =1, ¢ =3, ¢1z = 1.5. Find [i.and comment on its

value.
mxmwﬁmm 3.16: A mm.BEm of n independent observations is Swg on arv. X
having a logarithrmic series distribution,

f

= = — = 2, .
P(X =1 TSR z=1,

where @ is an unknown parameter in the range (0,1). Show that the MLE dof g
satisfies the equation . ) )
d+F1-8)In(1-8)=0,

where T is the sample mean, Find the asymptotic distribution of 8.
Exercise 3.17: (a) The gamma distribution

mkunﬂ!u.ml.mu

flzy o, ) = T

x>0,

bas mean o/ and variance o/f. ¥ o is koown, find the MLE of 8 and is
asymptotic variance.

Find the MLE of 1/5. What is its mean and variance? Does this estimator attain
the Cramér-Rac lower bound? Does the MLE for # attain the Cramér-Rao lower
bound?

() Verify that the MLE of 1/8 cbtained in part (a) is sufficient. Is the estimator
of B also sufficient?

3.6. Exercises &7

Exercise 3.18: Independent observations =1, e, ..., Tr are available on a rv.
which is normally distributed with mean and m&mbnm.& deviation both equal to p.
Find the MLE 4 of u. Show that the asymptotic variance of i is 1 /3n.
Compare this with the variance of the MLE which would have been obtained
for the mean if the functional relationship between the mean and variance had been
ignored. Comment on your results.

Exercise 3.19: A closed population of animals contains § males and § fernales.
A random sampie is taken in which each animal, independently of all others, has a
kncvwmn probability p of being caught. Altogether m males and § females are caught.
Write down the likelihood function L{f) for 4.

Let £ = Max(m, f), s = Min(m, f). By considering the ratio of L(¢ + 1) to L(6),
or otherwise, show that if

{E+11-2F < (t—s+1),

then the MLE § of 9 is %, and that if the condition above is not satisfied then & is
the largest integer smaller than the larger root of the equation

(20— 96" = (m+ f)§ +mf=0.

Exercise 3.20: The number of particles emitted by a radicactive source in unit
time has a Poisson distribution with mean 2 The strength of the source decreases as
time goes by, and on days 0, 1, 2, ..., n it is assumed that p is &, @8, af”, ..., a8
respectively, where o, 8 are gwboén parameters. Independent counts of wmiu&mm
g, T1, X2, + .., Tn are obtained over unit time on days 0, 1, 2, ..., n. Show that

=0 i=0

is minimal sufficient for {o, ), and find equations whose solution will give &, 3, the
MLEs for o and 5.

Write down approximate expressions for the variances of &, m
Exercise 3.21: In families where one parent has a rare bereditary disease the
probability that a particular child inherits the disease is p, where 0 < p < 1. Show
that, in a family of fixed size k, the probability of at least one abrormal (diseased)
child is I — (1 —p}". In a survey, only families of size k with at least one abnormal
child are sampled. In all, n such families are observed independently and there are

r; abnormal children in the ith family (i = 1,2, ..., »). Show that §, the MLE for
p, satisfies the equation

={l- ﬁ - 5)"] Muﬁ

i=]

Exercise 3.22: Individuals are given 2 measurable stimuius, to which they may
or may not respond. When the stimulus is , the probability that an individual
responds is p(x) where p{z) and z are related by

mpimu

plz) = g.
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Here o and 2 (8 > 0) are fixed and unknown constants. Thus as = increases from
—c0 to oo, p{z} increases from 0 to 1. Experimental results are available for & groups
of individuals as follows. Bach of the n; individuals in the group was given stimulus
%3, aad 7 individuals responded out of these ni(i=1,2, ..., k).

Find two equations whose solution gives the MLEs & and m for the parameters

& 2nd f, and describe briefly how you would set about solving for & and & when *

numerical values for n1, 72, ..., Nk} 1, T2, ..., Tk are given.

Exercise 3.23: A cosmetic company is considering the marketing of a new prod-
uet for men and wishes to estimate the proportion, £, of males in a certain age group
that would buy the product. Because a direct question may cause embarrassment, &
so-called randomized response procedure is used to disguise the interviewee's actual
willingness to buy the product.

Each person interviewed throws a fair die, and instead of giving the interviewer
his true response ‘Yes (will buy the product)’ or *No (will not buy it)’, he gives a
coded response 4, B or C, as indicated by the tabie below. The intexrviewer does
not see the score on the die.

Die Score

1 5 6

True Yes C
Response No C

Wi o

2 3
¢ C B A
A A A B

In a random sample of 1000 men, the numbers of 4, B, C responses were 440,
310, and 250, respectively. If each man in the sample has the same probability, &, of
having the response “Yes’, show that the log-likelihood for & Is

440 (3 — ) + 310 (2 ~ 8) + 250 In(1 -+ 26) + constaxt,

and obtain the maximum likelihood estimate of §.

Fxercise 3.24: Suppose that the number of eggs laid by a particular parasite s
a r.v. N, where N has a Poisson distribution with mear u. Fach egg; indepen-
dertly of all other eggs, has a probability p of hatching. Given that M denotes the
number of hatched egzs, determine the joint distribution of (N, M Y. Given that

(ni, mi), (n2, ma), ..., (Ne, Ms) Is a random sample of size s, determine 8, the
MLE of 8 = (i, p) and find the asymptotic distribution of &.
Exercise 3.25: Cousider a time series X1, X, ..., X which follows & first order

autoregressive model so that
(e — p) = $(Xomr = ) + &1

where = B[X:],t =1, 2, ..., n, ¢ is an unknown parameter which is to be esti-
mated, and &1, €2, . . ., En are independent r.vs, each with mean zero and variance =,
Show that the conditional distribution of X, given Xe—1, ..., X1 fort=2, ..., n,
is N[$(Xem1 — ), 0}, and that the marginal distribution of X3 is Nlu, 0% /(1—¢7)].
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Hence, show that the log-likelihood function can be written as

(¢, ¢”; =) = constant — W n(e”) + .w In(1 - ¢*) — hw.m...,m.mﬁmﬁ -
~ 5 Mo =~ k) = Bl — )]

t=2

Exercise 3.26: Find the method-of-moments estimator of § in (a), (%), (¢}, (d)
of Exercise 3.1.-

Exercise 3.27: Let X1, X, ..., X» be a random sample from the uniform dis-
tribution U® — £,6 -+ ). Show that the MLE of § is any value § in the interval
[max(X:) — &, min(X:} + 3]. What is the method-of-moments estimator?
Exercise 3.28: et X1,Xz,..., X, be a random sample from the density

flz)=e"®", o6
(a) Show that the MLE § of § is the minimmum of X, ..., Xa.

{b) By finding the density function of 6 show that § is a consistent, but biased, esti-

mator of § with B{§) = 8+ 1/n. Suggest an unbiased and consistent estimator
and find its variance.

{c} Compare the sampling properties of the MLE with those of the method
of moments estimator. Is it appropriate to compare the variances of these
estimators with that suggested by the Cramér-Rao inequality?

Exercise 3.28: Consider 2 random sample of size n from the distribution with
p.d.f

o Jextl 0<z<l, 630,
Fle8)= 0, elsewhere.
Find

(a) the MLE for 9;

(b) an estimator based on the method of moments.

Exercise 3.30: For the general linear model described in Section 3.4.2 show that
the MLE for B is identical to the least squares estimator.
Exercise 3.31: The minimum %> estimate of a scalar parameter § minimizes

*
(B: — pa(8))*
m pi(6)

and tke modified minimwm x* estimate minimizes
ks
b (B: — p:(8))°
gzl Pi R
(see Section 3.4.3). Show that the two estimates can be obtained by solving the

equations
S ps )P a6y _
2 ?@L 8

i=1
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and

W h,s@ H @ _ o

= i Bl

respectively. (Recall that 7% 6y = 0% pi(6) = 1.}

Exercise 3.32: Qmwum Exercise 3.31, or otherwise, find Bﬁm.ﬁon_m whose solutions
give the minimum x* estimate and the modified minimum x° estimate, respectively
for the mean 8 of a Poisson distribution. Assume that a random sample of n obser-
vations is available, and that the classes used are all the distinct values of the r.v.
which have been observed.

4
Hypothesis testing

4.1 Introduction and some basic definitions

The most usual formulation of a hypothesis-testing problem is that we have
to decide between twe hypotheses regarding one or more parameters 6. The
two hypotheses are the null hypothesis, which we denote by Hy: € € w, and
the alternmative hypothesis, which we denote by Hy: 6 € £ — w. Thus &
is the set of all possible values for 8, called the parameter space and w is
gorne subset of 2.

To make our choice between Hy and H; we have a random sample
X1, Xz,..., Xp from a distribution with p.d.f. f(z: 9). We choose some sub-
set O of possible values of Xy, X», ..., X, and reject Hy ¥ and only if X € C.
Usually C is defined in terms of (extreme) values of some statistic T(X). T
is the test statistic and ' is the critical region or rejection region; &,
the complement of C, is the acceptance region.

A hypothesis is simple if it specifies a single value for 8 (le. wor @~ w
contain only one point); otherwise it is composite.

It seems likely that it will be easier to deal with simple hypotheses than
with composite ones, so we start in the next section by woogm at the simplest
case of all when m‘ou H; are both simple.

4.2 Simple nuil and alternative hypotheses—
the Neyman—Pearson approach
If both Hy and Ay are simple, they can be written as

.mo“ @HQD. wm‘“_." m”mw

for some values 8g, 6, of 6. When we decide which of Hy, H1 to choose there
are two ways in which a mistake can be made.

Definition 4.1 ERejection of Hy when it is frue is colied o Type I error;
acceptance of Ho when & s false is ¢ Type II error. The probabilities of
making a Type I error or Type II error are denoted by o and 5, respectively.
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Ghosh and Mukeriee (1994) discuss some problems related to tests based
on adjusted conditional likelihood and adjusted profile likelthood, from both
frequentist and Bayesian points of view——see also DiCiccio and Stern {(1994).
Adjustments analogous t¢ Bartlett corrections may also be made to score tests
and Wald tests—see, for example, Cordeiro ef al. (1993), Rao and Mukerjee
(1995). DiCiccio et al (1996) and Stern (1997) describe adjustments to profile
likelihood-based score statistics. The results are relevant to interval estimation
as well as to hypothesis testing.

Maxny of the distributional approximations outlined in this section, as well
as the original x? approximation to —2 In(A), rely, for their validity, on an
assumption of some version of the usual regularity conditions. When these
conditions do not heid, the distributional approximations will often break
down, although it is sometimes possible to derive alternative distributional
results. For example, Stuart and Ord (1991, pp. 876-80) discuss an exact
distributional result, —2 In{}\) ~ x2,, which holds in some situations where
the range of X depends on 8. Cox and Hinkley (1974, Secticn 9.3) describe
some implications of a null value &y falling on the boundary of 2. Feng and
MecCulloch (1994) discuss the MLRT in the case of a simple mixture medel
where the likelihood is unbounded so that the global maximum does not exist.

4.8 Discussicn

Tn this chapter we have discussed the standard frequentist approach to hypoth-
esis testing. Discussion of alternative approaches based on decision theory and
Bayesian ideas i3 deferred until Chapters 6 and 7, respectively. A number of
topics, beth elementary and advanced, have been omitted entirely.

At the elementary level, some of the more practical aspects of hypothesis
testing, while indisputably important, do not fall naturally into the framework
of this text. These include the choice of sample size to achieve a desired power,
and the distinction between practical significance and statistical significance.

At an advanced level, detalls have been omitied for many om the more
complicated techniques, for example in Sections 4.4.2 and 4.7.3. A further
topic for which no details have been given is the comparison oH, ﬂoa..nmm&mm
composite hypotheses. Work in this ares dates back to Cox (1961). One type of
approach to problems of this type is to optimize a criterion such as Akaike'’s
information criterion {AIQ)—Akaike (1973). Such criteria are based on the
likelihood function, but alse include & penalty function, which increases as the
number of parameters in the model increases. Optimization of AIC, or similar
criteria, therefore involves a trade-off between those models which give a goed
fit to the data in terms of likelihood, and those models which are parsimonious
(have few parameters). Morgan (2000, Section 4.5) gives an example of the
use of AIC, while noting that simulation studies have demonstrated a superior
performance for the Bayesian Information Criteria (BIC) which has a different
penalty function to that of AIC.

-
1
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4.9 Exercises

Exercise 4.1: Use the Neyman—Pearson lemma to find the form of the critical
region for the best test of Hp against #; when

{a) X1, Xa,...,Xn are a random sample from a Poisson distribution with mean 4,
and Hy: @ 2= 8, Hy: 8 =61,61 > 8.
(b) X1, Xs,..., X5 are a random sample from the exponential distribution with

. p.d.f iﬁ 3 (1/8)e /% 2 > 0, and Hy: § = 8o, Hy: 8 = 81 > bo.
i

(¢) X1, Xz,...,Xn are a random sample from the exponential distribution with
p.df flz; 8) = 8™ 2 > 0, and Ho: 0 = 8y, H1: 8 = 61,61 > bo.

A&u X, Xz, .. NH.;H ~ ;Z.C.SLQL Xay, Xa2, .. N.uﬁu ~ .?A.:PQMY all uﬂd are
ﬁmmvmvmmﬁﬂ & each other, ¢F,¢3 are wﬁodsp, mbm Ho:po=pa, Hitppo = pa+8
with § > 0 (y1 and & are both known constants).

Exercise 4.2: In Exercise 1{d), suppose that o7 = 03 = § == 1,ny = ny = n, and
that we wish to perform a best test with o = 0.01. Find

(2) the power of the test when n = 10;

(b) the smallest value for n, for which we can achieve a power >0.95.

Exercise 4.3: A random sample X3, X»,..., X, is taken from the gamma distri-
bution with p.d.f.

flz:6) = E\é =™ 50,

where A > 0 is H..Boéﬂ‘u but 8 > 0 is an unkrown parameter.

.m_poé that the critical region for the most powerfil o-level test of Ho: 6 = 6
against Hi: 8 = §1, where 81 > 8y, is of the form 377 | X; < ¢, for some constant
C. Show also that when n = 1 and X = 1, the power of this test is 1 — (1 — a)?/%,
Exercise 4.4: Ther.v. X has p.d.f. f(x), the functional form of which is unknown.
A random sample of size » is drawn to test the null hypothesis

Ho: flz) = fola),
against the alternative
Hi: fla) = fulz)

The functional forms of fo and fi are known. They have no unknown parameters
and they have the same domain.
By considering the p.d.f:

Afo(z) + (1~ A fa(=),
show that Hp and Hi may be expressed parametrically. Hence show that if
folz) = (2m) 7% (- 447,
film) = gexp(~iz}), —co<z <o,

then the best critical region for the test of Hy against Hy is given by

n
30

i=1

Find the probabilities of type I and type II errors for the best critical region for
n = 1 with ﬁmu k=1and (b) k= 1. In the case {a) is the test unbiaged?

-0 <z <0,

— 1 > &, for some constant k.
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Exercise 4.5: X1,Xa,..., X, are a random sample from the gamma distribution
with parameters 3 and 6, which has p.d.f.

HAH“ m/ - 'Ia.wmiu\m_“

355 z >0

(a) Find the best test of Hy: § = 8y against Hi: § = §; where 81 > fo.

(b) Use the resuls 237, X;/6 ~ xnumi to coustruct the best test of Hy against
Hy when n =4, 6p = 1, 1 = 3 and & = 0-05. Calculate (approximately) the
power of this test, that is, find the probability of falling in the critical region
when H1 is true.

{c) Use (a} to find the UMP test of Hy against Hi: 8 > fo.
Exercise 4.6: X1, X»,..., X, form a random sample from a uniform distribution
on [0, 6]. Find the form of a best test of size o for Hy: 8 = 8 against Hy: 6 = 41,
where 81 > 8. Suppose now that the alternative bypothesis is Hy: 8 > fg; show
that there exists a UMP test, and plot the power function of such a test.

Exercise 4.7: A random sample X1,Xz,..., X is taken from the distribution

with p.d.i. )
a0 = mim oo -5 (57) § o0

where § > 0. Show that there is a UMP test of the null hypothesis Ho: 8 = &
against the alternative Hi: 8 > 8y, and fnd the form of this test.

Exercise 4.8: Suppose that X, Xz, .
ar.v. X, which takes values only in the range (0, 1). Under the null hypothesis Ho,
the &mcﬂwnﬁon of X is uniform on (0, 1), whereas under an Eﬂmwnm.ﬁdm hypothesis,
Hi, the distribution is the truncated Pﬁvoﬂwﬁﬂﬁ with p.d.f

mn

F@ 8= 5,

0<z<l, §>0,

where 6 i unknown. Show that there is a UMP test of Hy vs Hj and find,
approximately, the critical region for such a test when n is large.

Hxercise 4.9: For a random sample of observations from a Poisson distribution,
as in Exercise 1{a), consider testing Ho against the composite alternative Hj: 9 5 fq.
Show that no UMP test exists for Hy pmm.ﬁmd Hi.

An intuitively plausible acceptance region for Hp against Hi above is “of the
form €y < 30 X: < Ca, where C1, C; are suitably chosen integers such that
Cz > b + 1. Using the result thas ¥ = T, X; has a Poisson distribution with
mean nf, show that the power function of the test with this acceptance region has

the form
ﬁ.u -z

1™ MU (nf)¥ [,

y=C1+1

Exercise 4.10: Suppose that X3, Xo,...,X. are a randem sample from a
N(g,o®) distribution with @oﬁp vmnmﬁmﬂmwm unknown. We ﬁam_p to test the null
hypothesis Ho: p =0, 0 < ¢ < co against the alternative Hy: u#0, 0 € ¢® < o,
Find the form of

{a) a UMP similar test,
{b) a UMP invariant test.

.+, An is 2 random sample of observations on-

49 Exercises a5

Exercise 4.11: Let X1,X2,...,X, be a rendom sample from a normal distri-
bution with unlmown mean i mba variance o mwoé auma the MLRT of the null
hypothesis Ho: o~ == of against the alternative m 12 0% # of has a test statistic

H.@H "/ ™92 where Q= M

k(3
in=l

Show that this test has a critical region consisting of both large and small valaes of
Q, that is, Hy is rejected for @ < €y or @ > Cp where ¢y < Cy are appropriately
chosen constants. By considering the minirnum value of the power function of such
a test, derive conditions that €y and C» must satisfy if the test is to be unbiased.

Exercise 4.12; A survey of the use of a particular product was conducted in four
areas, with a random sample of 200 potential users interviewed in each area. The
results were that in the four areas, respectively, 1, =2, T2, and zs of the 200
interviewees said that they used the product. Construct an MLART to test whether
the proportion of the population using the product is the same in sach area.

Carry out the test, with o = 0.05, when 21 = 76, T2 = 53, @3 = 59, and z4 = 48,
using the large sample approximation for the distribution of the test statistic.
Exercise 4.13: Random samples are available from & exponential distributions;
the ¢th distribution has paramster #;, and the sampile frorm this distribution is of size
7y, Construcs a MLRT of the null hypothesis 8, = 8z = .- = 8, against 2 zeneral
alternative, and show how an approximate test may be ﬁmﬁdg& by comparing the
value of a suitable stasistic with tabulated values of a x* distribution. Show also
that, if £ = 2 and ny =ne, an exact test based en an F-distribution is possible.

Exercise 4.14: Wmﬁaoﬂ mmﬁ%ﬁm of size n; and no respectively, are drawn from

the a,ﬁ&ﬁ_uﬁ_oum N{u1,03) and N, ¢3), all four parameters being unknrown. Sup-
pose that o3 \ ot =g, mwm we wish to test the null hypothesis Hq: ¢ = ¢, for moBm

specified cp. Constriet a MLRT for Hy against the two-sided alternative Hi: ¢ # o

and, in the particular case when n1 = nz, show that the test may be performed by

comparing the observed value of a suitable statistic with a standard tabulation of
critical values of the F-distribution.

Exercise 4.15: Suppose that Xy, X

yo-o1Xn form a random sample from a
distribution with p.d.f.

a < g be),
elsewhere,

o 8y = {02,

where 5(8) is a monotonically increasing function of the single parameter 8, Show
that the MLRT statistic for testing Hy: 4 = 8 against the two-sided alternative
Hi: 8 # 6y is given by

E{n)
W=-21())=—2h ﬁ \ o60)e(z) %M ,
wv
where Xiny = max(X1, Xa,...,Xa).

Given that

2

= <
Mnﬁ.ﬂmm.vﬁ mwu O:IRM%_

g, elsewhere,

obtain the gﬁmﬁ. statistic W, as above, and show that when Hy is true W follows,
exactly, a x* distribution on two degrees of freedom.
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Exercise 4.18: Let X1, X2,..+, Xm and ¥1,%2,...,Y: be independent randern
samples from two exponential distributions with unknown parameters A and y, that
is, the Xs and Y's have, respectively, p.d.fs

Fl N =2, 220,

gy p) = pe™, y20.
Show that the critical region for the MLRT of the null hypothesis Ho: A = 1 against
the alternative hypothesis Hi: A ¥ u depends on the data only through the ratio
§/% of the sample means. .

Given that 2A 3071, Xi and 2u3 %, ¥y each has a x” distribution, with 2m
and 2n degrees of freedom respectively, derive the distribution of ¥/X. Use this
distribution to find an unbiased test of Hy, above, against the one-sided alternative
Hi: A > p. .

Exercise 4.17: A random sample of n observations X, Xa, ..., X, is taken from

™\ ixa Poisson distribusion with standard deviation § (i.e. the usual parameter of the

distribution is 6%). Construct a score test for the nuil hypothesis Hy: 8 = 6o against
the alternative Hy: @ > fg, and show that this test is UMP.

If 9y = 1 and n = 5, find a critical region for the above test with size o = 0.0318.
What is the power of this test when 8 = 27

Exercise 4.18: Suppose that X1,Xa,...,X. form a random sample from
N(u,c?) where 1 and & are both unknown. Use the natural parameterizaticn
for N{u,¢*) to Aind an expression for —2 In{A) im a MLRT of Ho: p = uo vs
Hy: g5 po—see Section 4.6.2.

Exercise 4.18: Using a random sample of size n from a Poisson distribution

" with mean 6, it is required to test Ho: # = 8y against Hy: 8 # . Find the test

statistic for
{a) & score test of M.Ho vs Hi;
(b) a Wald test of Hp vs Hi.
Compare these statistics with that of the MLRT for the same pair of hypotheses.

Exercise 4.20: For an exponential distribution with p.d.f f(z; §) = geo,
z > {, construct :

{a) the score test;
(o) the Wald test;
for the hypotheses Ho: 6 = g vs Hi: 6 £ 6y,

Exercise 4.21: Suppose that X1, X, ..., X, form a random sample from a distri-
bution with p.d.f f(z; 6), where 8 = (61, 9z). Here 81 is a parameter of interest and
&~ is a nuisance parameter, and it is required to test Hy: 01 = f10 vs Hi: 61 5 fho.
The score test statistic in this case is u?(f10)J; " and the Wald test statistic is

EH - mzumw.w_m.uu where 8, 8 are the MLEs of 8 under Hy and Hq U H; respectively,

5¢ a°e
.Ghm._.ou B ...W.W.M mpHmHDu .Hm, =5 ﬁ[%g =g
&%
.N.m,:mu = Iy l.wmu\.wmu and I = —Hlmwm.mmmq;mum‘

Find the Wald and score test statistics for the hypotheses in Exercise 4.11.

Exercise 4.22: Show that the MLRT in Example 4.10 (Section 4.7.2) is asymp-
totically equivalent to the Wald and score tests.

5
Interval estimation

5.1 Intreduction

In Chapters 2 and 3 we discussed point estimation at some length. However,
as was noted in Chapter 1, a point estimate on its own s of little use—some
measure of its precision is also necessary. This leads naturally to the idea of
interval estimation, which is of great practical importance. Nevertheless, we
devote less space in this book to interval estimation than to either point esti-
mation or hypothesis testing. This is because the theory underlying interval
estimation is closely related to that already covered for point estimation and
bypothesis testing, and the theory is most conveniently developed in these
latter contexts. In fact, there is a close relationship betwesn interval estima-
tion and hypothesis testing, so that many of the ideas of hypothesis testing
carry over directly to interval estimation; we show this later for some of the
more useful ideas. The approach used in most of this chapter is known as the
frequentist approach.

After defining confidence sets in this Intreductory section, Section 2 dis-
cusses varicus ways of constructing such sets, mainly based on ideas from
point estimation and hypothesis testing. Section 3 defines a number of desir-
able (optimal) properties of confidence sets, and Section 4 describes some
problems associated with interval estimation. Some of these problems can be
overcore by fiducial intervals which are discussed briefly in Section 4 or by
using a Bayesian approach, which is described in detail in Chapter 7.

Suppose that we are interested in a wvettor of parameters 6. Then we
divide the possible values of 8 into a ‘plausible’ region and a ‘less plausible’
region with the plausible region usually constructed to have a predetermined
probability of including the true value of 8. Note that the region depends on

data and is random, whereas & is fixed. More formally we have the following
definition.

Definition 5.1  Suppose thet {f(z; 6); 6 € 11} defines o family of distri-
butions, indezed by a vector parameter, 8, and thet o random sample of
observations, denoted by X, is taken from flz; 8) with 0 fized, but unknown.
If 8x is o subset of 1, depending on X, such that

Pr[X: Sx >8] =1-a,

thern Sx is a confidence set for 8 with confidence coefficient 1 — o
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iatter property which causes 'some of the problems associated with frequentist
intervals which were described earlier in the section. The post-data nature of
fiducial intervals means that it is possible to evaluate probabilities concerning
values of §, given =, which is Impossible in the frequential framework. The
way in which Wang (2000) constructs fiducial intervals ensures that the value
of 4 for which the observed z is most likely (the MLE) is included in the
interval, something which does not always happen with frequentist intervals.
For a location or scale parameter 8, for which an associated statistic 7" has a
probability distribution which is stochastically increasing in ¢, Wang (2000)
shows that the lower and upper end-points 81, by of a fiducial interval with
confidence coefficient 1 — a, given an observed value ¢ for T, are obtained as
the solutions to the equatichns

PI 2>t 6(8) = as, PT<t]6(1) = a1,

where o1 + @z = o The equations giving the ‘exact’ interval for a binomial
parameter in Section 5.2.3 are of this form. More generally, in the binomial
case, Wang (2000) shows how fiducial confidence coefficients can help in under-
standing the complexities of coverage probabilities for the various binomial
confidence intervals discussed in Example 5.5.

- Another complication arises with 2all types of confidence sets or regions if
we wish to construct several regions simultaneously. If the confidence level is
1 — ¢, for each region, then the overall confidence level relating to the siroul-
tanecus coverage of all parameters of interest will be less than 1 — . In some
circumstances this overall level may be of more interest thar the confidence
level for individual parameters. For example in simple linear regression, with
the model E[Y] = fo + S1z, the usual confidence interval for E[Y], based on
n pairs of data (21, 1), (%2, ¥2)s- - {Tn: Yn). bas end points

VU S -k s L e
R D DN

where g, B; are least squares estimates of 80,51 (Section 3.4.2), s° is the
residual veriance, and #,.z;q/2 5 2 critical value of the ¢-distribution with
(rn —2) degrees of freedom (Hogg and Tanis, 1093, Section 8.5). This interval
kas probability (1 — ) of including F{Y] when we consider one single value
of z. However, if we require a probability 1 — a of simultaneously inchuding
E[Y] in intervals constructed for all possible x, we must replace tp—2.q /2 by
(2P o)/ 2—see Miller (1966, p. 111).

Yet another problem with confidence sets or regions is the lack of exact con-
fidence regions in examples including nuisance parameters. Weerahandi (1995)
addresses this probiem by introducing the notion of generalized confidence
intervals, in which the requirements placed on the behaviour of the interval in
repetitions of the same experiment are relaxed. Weerahandi’s (1995) approach
alsoe provides an alternative resolution of the problem in Exarnple 5.7.
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Finally, we note that other types of intervals, such as tolerance intervals
and prediction intervals, each with their own interpretation, may be useful
in some circumstances—see Vardeman (1$92).

5.5 Exercises

Exercise 5.1: Xy, Xs,..., X, are a random sample from the exponential distri-
bution with p.d.f. f(z; 6) = S\Sm}a\m z > 0. Using the result that ¥ = 257, X, /¢
has a Xﬁi distribution, construct a confidence interval for § based on the pivotal
quantity % .
Exercise 5.2: Find a confidence interval for the wariance of the exponential
distribution given in Exercise 5.1.
Exercise 5.3: Independent normally distributed r.vs X3, Xo, ..., X, are such
that X has expectation 27(k) and variance g(k), where f(k) and ¢g(k) are known
functions of &, k== 1, ..., n. Find a sufficient statistic for 4, and from it construct
a two-sided 95% confidence interval for 4. .

I Flky =glk) =k, k=1, 2,..., n, what is the smallest value of n for which
the length of this ooupmambom interval is less than 0.57
Exercise 5.4: Use the MLE for 8 mmmm Exercise 3.28) to find an approxdimate
100(1 — @)% confidence interval for 4, given a random sample of size n from the
distribution with p.d.f.

flm @)y =062""", 0<z<1, 6>0.

Exercise 3.5: X3, X2,..., X, are a Sﬁmoﬂ sample from a normal distribution
with Wboéd mean 4 and cbwu.oéﬂ variance o°. Three possible confidence intervals
for o are:

(K= R O (X = )
{a) AMA o VMW\JH p” uv

Xy =) X —u)?
th - ) Mﬁ sv

gl

g==1

) maﬁnttu aﬁmuatv“

[551 ’ Cn

where a1, az, b1, be, c1, ce are constants.

Find values of these six constants which give confidence coefficient 0.90 for each
of the three intervals when n = 10 and compare the expected widths of the three
intervals i 8 this case.

With ¢® == 1, what is the value of n required to achieve a 90% confidence interval
of width less than 2 in cases {(b) and (c) above?

Exercise 5.6: For a random sample of size n from an exponential distribution with
mean 8, find a pivotal quantity based on the approximate large sampie distribution
of the MLE for €. Hence show that

mzm»\w.w&& _ T\m,\mwo@u

provides an approxdimate confidence interval for 4, with confidence coefficient 1 — o
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Exercise 5.7: Use the results of Exercise 3.18 to find an approximate confidence
interval for u, when u is beth the mean and standard deviation of a normal
distribution.

Exercise 5.8: For the data given in Exercise 3.23 find an approximate 95% con-
fidence interval for §. Suppese that you are able to ascertain the true response for a
random sample of » men. Estimate how large n must be in order to achieve a 95%
confidence interval for 8 with the same width as that obtained above.

Exercise 5:9: A random sample X1, X3,...,X, is obtained from a distribution
whose p.d.f. depends upon a scalar parameter 8. Given that £(4; ) is the log like-
Hhood function, write down the asymptotic distribution. of §£/84, and show how it
can be used to provide a pivotal quantity.

Hence, or otherwise, derive an asymptotically valid ccnfidence interval for o
using a sample of size n drawn from. the normal distribution with mean zero and
standard deviation o.

Exercise 5.10: Cne success ocours in 10 trials of a bincmial experiment. By con-
sidering the simple null hypothesis Hy: p = py, and the fact that a confidence
interval can be constructed by finding values of py for which Hy is accepted, find an
‘exact’ two-sided confidence interval for p, the probability of success, with confidence
coefficient 0.95—see the continuation of Example 5.5 in Section 5.2.3.

Fxercise 5.11: Given that X; » Poisson 1.v. with mean 8, takes the value z,
show that a confidence interval {6z, 6y) has confidence coefficient 1 — & when 61,
B satisfy the equations

== e o £ — i
"o e~

M, L
N it

= - 20

g fm_2
3 9

il
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mxmnommmm.wm“mnﬁﬁommdgﬂ\mrvmmmxu-&mdadﬂaobéwgmwamm..mmmmomm_..mmaosu
and hence p.d.f. .
=1 wxf2
7t
.unhﬁu = i x> 0.

By integrating f(z) by parts, show that, for any ¢ > 0,

m|n\u mn\muklw

Pri¥as 2 d = ~r=

..TWHW\NQEE |V... OT

where u\....ﬁnlwv ~ uthn 1)

Use this result together with an expression moH PrYs 2 o], where ¥z ~ x4, to
derive a relaticnship between the c.d.fs of the x* and Poisson distributions.

Deduce from this relationship and from Exercise 5.11 that the interval

@xwﬂﬁln\s, wNwa.Tuﬁ\&
based on a single observation, z, from 2 Poisson distribution, gives a confiderce
interval, with confidence coefficient 1 — w, for the mean of that distribution.

Exercise 5.13: The r.v. X has a Poissor distribution with parameter §; and,
independently, the r.v. X has a Poisson distribution with parameter 2. By con-
sidering the conditional distribution of X, given the value of X1 + X4, show how
2 test of the null hypothesis that &y = ks, for fived k, reduces to testing that the
‘success probability’ parameter of a binomial distribution is &/(1 4 k).
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Modifications are made to a machine, which runs ¢continuously (except for break-
downs, which result in a negligible loss of running time), in an attempt to reduce the
number of breakdowns which occur. In a one-month period prior to the medifica~
tions 15 breakdowns occurred, while in a three-month period after the medifications,
20 breakdowns occurred. Find an approximate 35% confidence interval for the ratio,
1/0=, of the breakdown rates before and after the modifications were made.

Exercise 5.14: A r.v., X, having a Poisson distribution, is observed to take the
value z. Using the result that, for large 8, X~N(8, 8}, obtain a quadratic equation
in 9 whose roots give the end points of a confidence interval for the mean, 9, of the
distribution.

The following table gives the frequency distribution of the number of break-
downs in a year for 550 army vehicles. Assuming the data arise as a random sample
from a Poisson distribution, find a confidence interval with approximate confidence
coefficient 95% for the expected number of breakdowns per vehicle per year.

Number of breakdowns 0O 1

2 3 4 5
Number of vehicles 205 180 53 5 b5 2

Exercise 5.15: Random samples, each of size n, are drawn from the distributions
N{u, o3) and N(uz, 63), all four parameters ,cmwpm unknown. Use the results of
Exercise 4.14 to find a confidence interval for o2 /o3.
Exercise 5.16: Given that A, u are parameters of two exponential distributions
as defined in Exercise 4.16, use 5:,5 Hmmc:um of that Exercise to find a lower oonmamnom.
limit for Afp. .
Exercise 5.17: Show that the two oobmamﬁom E+m2mpm for-p found in munmﬁ%wm 5.5
in Sectior 5.2.2 can be derived by inverting the score test and the Wald test for
Ho: p=1po vs Hyi: p # po (see Example 4.10).
Exercise 5.18: Let X3, Xz, ..., X» be a random sample from the uniform. dis-
tributicn on the range [0, 6]. Use a pivotal quantity based on the sufficient statistic
Y = X(ny, to derive a family of 100(1 — )% confidence intervals for 8.

Shew that the shortest 100(1 — @)% confidence interval for § in this family is of
length Y{a~/" — 1),
Exercise 5.19: Show that the critical region C provides an unbiased test of
Hy: 6 = 8 if and only if the confidence set for # based on C is unbiased.
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When the cost of each observation {¢) is small, a large number of obser-
vations are usually taken. The consequence is that K will be small and K>
large. It can then be shown (Exercise 6.33) that

e K = ....H...Hﬁ.mﬂ&ﬁ Muaﬁm.o_atw
L P A b Pr[Hjc

The SPRT tends to overshoot the thresholds, K and X5, when it stops. That
is, the test stops with LR(n) < Kz or LR(n) > K>, ard not LR(n) = K, cr
LR(n) = Kz. It is because of the ‘cvershoot’ that results given in Proper-
ties 6.2-6.4 are approximations, rather than exact equalities. The approxima-
ticns will usually be quite accurate as the overshoot is generally small.

and WNR

5.8 Exercises

Exercise 6.1: The risks for five decision procedures dz, 8z, ..., §s depend om the
value of 2 positive-valued parameter 8. The ricks are given in the table below.

§ 62 83 04 &g
0<£d<1l 10 10 7 & 8
1<8<2 8 11 & 5 10
2<9 13 11 12 14 14

{a) Which decisicn procedures are at least as good as §; for all 87

{b) Which decision procedures are admissible? ‘

(¢) Which is the minimax procedure?

{d) Suppose § ~ U0, 5|. Which is the Bayes procedure and what is the Bayes risk
for that procedure?

Exercise 6.2: Suppose &y, b2, ..., 9, are the only possible values of 8 and that
p{f:) > Ofor i = 1,2, ..., k (k finite), where p{@) is the prior distribution. Shew
that the Bayes estimator is admissible.

Exercise 6.3: Suppose §” is the Bayes estimator of 4 botk if p1(8) is the prior
distribution and if p2(#) is the prior distribution. Show that 4* is then also the Bayes
estimator for the prior distribution p(8) = ap1(8) + (1 -~ &)p2(8), 0 € £ 1.

Exercise 6.4: Suppose the posterior distribution of 9 is
g(f) =46 ~36%, 0<E< 1
(2} Show that the peint estimator of 4 for an absolute error loss function is § =~
0.597.
() Show that § & 0.567 is the point estimator of 8 under the loss function

g, B—-di<ol

L9 =9, G-g3o01,

where ¢ > 0.
(¢) Find the point estimator of  for a quadratic loss function.
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Exercise 6.5: A baker has to decide how many loaves o bake tomorrow. If he
bakes too many, he loses k1 pence for each loaf he has left. If he bakes too few, he
loses k2 pence in profit on each loaf that he could have sold. Suppose his opinion
about 4, the number of loaves he could sell tomorrow (if he does not run out) is

represented by the p.d.f f(f) whose distribution function is F(6). Show that 8,

the number of loaves he should bake tomorrow, satisfies F(8) = ka/(kr + ko) if
Ba/(ky + k2) is an integer.

Exercise 6.6: Let § denote the unknown variance of the vaziable X. 4 is to be
estimated from a sample of values of X using an estimator of the form ¢ = bs®,
where s is the sample varianee. It has been decided to use the loss function

hmaim,u.umnplg m , 6>0, 0>0.

{2) Show that the risk function has the form
R, 8 =b—1n(b) —1—c,

where ¢ does not depend on b.

@mﬁoigmaémﬁuﬁﬁ&ﬁamaﬁaoao:wiogwnW%:wﬁ
b=1. o '

Exercise 6.7: Evaluate the following integrals by comparing them to standard
digtributions ’

(&) [§" magpyete e d,
(b) [ 156%(1 - z)° da.

Exercise 6.8: Suppose X is an observation from the distribution

flo; ) =(z-16%1-072 =£=2,8..; 0<8<1.
The prior distribution for 8 is a beta distribution:

50
I(4)1(3)

B1-67 0<8<1,

p(f) =
and the loss from estimating § by § is (6 — 8)°.
{(a) Find the posterior distribution, ¢(#; x).
(b) Show that the Bayes estimator of 8 is 6/(7 + z).
(¢) Find the Bayes risk associated with this estimator.
Exercise 6.9: Let X1, X», ..., X, be a random sample from N(8, o), o® known,

and let the prior distribution be § ~ N(4, v*). Suppose 6 is to be estimated under
a quadratic loss function.

(2) State the Bayes estimator of § and show that this estimator has constant risk
a5 T == CO.

{b) Deduce the minimax estimator of # and state its risk.
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Exercise 6.10: Suppose the prior distribution for 8 is to be modelled by a normal
distribution. An expert assessed 20 as his median estimate of ¢ and 25 for its upper
quartiie. Determine the normal distribution thet is consistent with his assessments.

Exercise 6.11: Suppose # > 0 and the prior distribution for 4 is to be modelled
by a gamma distribution. Give the distribution if the prior mean is 20 and the prior
standard deviation is 10.

Exercise 6.12: Suppose § is the probability of ‘success’ in a trial and the prior
distribution for @ is to be modelled by a beta distribution. Before observing any
trials, the prior mean of ¢ is 0.4 while, after observing 10 independemt trials in
which there are 7 successes, the posterior mean of @ is 0.5. Determine the prior
distribution (before observing the 10 trials).

Exercise 6.13: Let z), 72, ..., =n denocte a random sample from the Weibull
distribution with index 2: ’

flzs 8) = 26 zexp(—8°2%), (x> 0),

where ¢ is an unknown positive parameter. Assume that the prior distribution for
§ is the Improper distribution

p(8) = constant.

Find the mode of the posterior distribution of 6 in terms of 21, T2, ..., Tn.-

Exercise 6.14: Suppose f(z; 6) = faz " exp(—62%), (x > 0,2 > 0), where 8 is

an unknown positive parameter and a is a known constant.

(a) Show that this distribution is & member of the one-parameter exponential
faroily of distributions.
(b) Hence suggest a conjugate prior distribution for 8.
Exercise 6.15: The time to failure of a particular type of component follows an
exponential distribution with mean 1/6.
{a) Determine the probability that a component will be working after 10 h.
In & trial, the times to failure (in hours) of five components were 4, 1, 3, 3,
and 6, and a sixth component was still working after 10h when the trial was termi-

nated. Prior to the trial, opinion about the value of ¢ corresponded to the gamma
distribution:

p(8) = 167%™, 8> 0.

(b) Show that the posterior distribution of 8 is

ags N
g(f | data) = u,wlmqms%, 8> 0.

Exercise 6.16: Suppose X3, X2, ..., Xn are random independent observations
from a Poisscn distribution with unknown mean 6,

(a) Give the likelikoed for 6. )

(b) Form the conjugate prior distribution and identify it.

{c¢} Determine the posterior distribution.

d} State the mean and variance of the prior distribution and the prior expectation
_ xp
of the variance of X = 3 X;/n. Show that the posterior mean is a weighted
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average of the prior mean and the sample mean, with weights proporticnal to
the reciprocals of the prior variance and E[Var({X)].

(¢) Suggest an uninformative prior distribution for 6.

Exercise 6.17: A large populetion must be screened for the presence of a certain
antibody in the blood. An infallible test on a blood sample from a single person
costs ¢y and gives a positive result if the antibody is present and a negative result
otherwise. If & batch of blood samples from n people are mixed together and then
tested, the test costs ) +cam and gives a negative result only if none of the n samples
contained the antibody. If a positive result is obtained then all n samples have $0
be tested individually. The proportion 6 of people who have the antibody has prior
distribution
2(0) = 8(1—0)°"'  with 3 large.

(a) Show that individual testing gives a lower expected cost than testing in batches

of gize n if 3
1
n,mVnHmﬁ.nT_QIMV.

{(b) Show that if batch testing is adopted, the optimal value of n is approxi-
mately /5.

(c) As screening goes along, suggest how increasing knovwledge about @ can be used
to modify the value of n used in successive screening tests.

Exercise 6.18: When X1, Xa, ..., X. is a random sample from each of the fol-
lowing distributions, determine the Fisher information, Jp, and hence find Jeffreys
prior disteibution for 6.

{a) The geometric distribution; f{z; §) =4(1 — 8"}, =z=1,%, ...

(b} The Poisson distribution, f(z; §) = e ?6% /2], =1,2,....

{c} The gamma distribution, f(z; §) = 18%z%~>%, 2 > 0.
Exercise 6.19: Suppose 2 random sample of size 12 is taken from a rormal dis-
tribution with a variance of 15 and an unknown mean, . Hy: = 4 is to be testad
against Hi: == 1. If po = 0.1,p1 = 0.9, and a = b, should H; be rejected when the

sample mean is 2.07 Would the result be the same if a sample of size 24 had given
the sample mean of 2.07

Exercise 6.20: Show that d- is the Bayes test for 0.177 < pg < 0.462 in
Example 6.7. For what value of pg is Js the Bayes test?

Exercise 6.21: Suppose we have 2 single observation, 1, which comes frorm a
distribution with p.d.f. f(z), and we want to test
Ho: flz)=21~2), 0<z<]1,
against
Hit fl2) =22, 0<z<1.
Show that the best critical region for the likelihood ratio test of Hp vs & is given

by =1 2 B for some constant B. Given that the losses incurred when Type I and
Type Il errors occur are equal, ind the values of B which give

{2) the minimax procedure;

(b) the Bayes procedure, when the prior probabilities are 2,2 for Hy and H,
respectively.
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Find the values of the Type I and Type II errors in (a) and (b), and find also the
prior probabilities of Hy and Hi for which the Bayes procedure is equivalent to the
minimax procedure.

Exercise 6.22: A random sample X1, X2, ..., Xa(n > 1) is to be taken from
a uniform distribution whose range is (0, 4). One of the hypothbeses, mo. 4= H
or Hi: @ = 3, holds and the prior Huwo‘cmbnpﬁmm of these hypotheses are 1 and &

H.mmvmoﬁdm?.. On the basis of a sample of size n, Hy must be accepted or Hm._mnama
There is zero loss for 2 correct decision, a loss of one ¥ Hy is incorrectly rejected

ard a loss of ten if Hy is incorrectly accepted.

(2) Show that for n < 3, the Bayes test always rejects Hq while, for n > 4, Hy is
accepted if no observation in the range (1, 3) is observed.

(b} For sach n, determine the expected risk for the Bayes test.

Exercise 6.23: Two sutwardly identical EmmmE.Em instruments M; and Mz have
normally distributed errors with variance of and ¢%, respectively, where oF < o2.

A technician brings you ome of the instruments, vm._n can shed no light on which
instrument he has brought. You therefore Bm.wm 7 observations zy, T3, ..., Tn of &
fixed quantity 8 and calcwlate U = Y{x; — Z)2. Suppose the loss from. Eooﬁmog%
deciding the instrument is M) equais the loss from incorrectly deciding it is Ma.
Show that you will decide it is Mo, if and only if

U > 2(n — 1)(In(e) ~ Infen))/ (67 — 077%).

An altermative approach to the problem is to argue on intuitive grounds that the
decision rule should take the form: decide it is Mo if U > %k, and choose % to
minimize the vuo,om.va% of making a mistake. Show this leads to the same rule as
above. (Note U/o? ~ Xin—1y if M; is the instrument being used.) ’

Exercise 6.24: Considér 2 binomial experiment with twe trials, where Hp: p = 0.2
is to be tested against Hy: p = 0.7. Suppose the loss is zero for a correct decision
and five for an incorrect decision (wrongly rejecting Ho or wrongly accepting Ho).
Let po be the prior probability that Hg Is true. State the possible critical regions
and, for each region, determine the range of values for pg for which that region is
the critical region. If po = 0.4, what is the expected risk for the Bayes test?
Exercise 6.25: Suppose f(z; 8) = ¢~z < 0. Two alternative theories give
é,Emm for 8. The first theory, Hp, states m = ] and the mmoou& theory Hy, states
8 = 2. The prior probabilities are Pr{Hy) = { and Pr(H;) = 3.

(a) Given a single datum, =, show that &*/ mw+muv is the posterior probability that
Hy is the correct theory.

A decision as to which hypothesis holds must be made, the loss being 10 for an
incorrect decision with no loss for a correct decision.

(b) If a decision is to be made without taking any data, which theory should be
chosen and what is the expected loss?

(c) I cne datum z is taken and then a decision made, show that Hy should be
chosen if £ > 1.0086.

(d} Suppose the cost of taking a datum is ¢ and a decision can be made either
immediately (without taking any mma& or after taking just one datum. Show
that the datum should be taken if ¢ < 2

Exercise 6.26: A stream of observations .N. 1, Xz, ... may be taken one at a time
=t a cost of ¢ for each observation. The X are iid. with X; ~ N(8, ¢%), ¢ known,
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and the prior distribution for 8 is ¢ ~ N @: uu The value of ¢ must be estimated
under the quadratic loss function, L (4, §) = (8 — 8)7, where § is the estimate of 6.
Suppose n observations, 71, Tz, ..., Zn, are taken.
(a) Give the posterior distribution of # and the Bayes risk (including sampling
costs) from stopping at this stage.
{(b) Hence show that sampling should stop when

»

z .z

T .

{Notice that we know how many cbservations to take before sampling starts, because
the Bayes risk does not depend on their values.)

Exercise 6.27: Continue Fxample 6.8 and determine

AT

(a) when sampling should be continued after one observation has been taken;

(b) whether the first observation should be taken.
Exercise 6.28: Consider the situation examined in Example 6.9 and suppose each
observation costs the same amount. For this case, axplain whether the fixed sample

look ahead procedure is the same as the m-step look ahead procedure. Does your
answer depend on the value of m?

Exercise 6.29: Consider the problem presented in Exercise 6.22. If =; & (0, 1) for
i=1,2 ...,nand T = (31, Z2, ..., Tn)~, show that

Prif |2 =4 (3)" / {1443 Op%

Suppose a fixed-size sample is not faken but, instead, observations are taken sequen-
tially at a cost of ¢ for each observation, where ¢ is small and positive. Show that
the fixed sample size look ahead procedere stops when either

{a) an observation ir the range {1,3) is obtained (in. which case H1 is accepted), or

(b} n" observations ir the range (0, 1} are obtained, where n” is the smallest integer
for which

e > 80/(12 + 37 N,

(in which case Hy Is accepied).

Exercise 6.30: Suppose X1, Xa, ... is a sequential sample of 1.i.d. observations

with
13"
&Fo&m ) v , x=1,2,...,

and we wish to test Hg: 6 = 2 against Hy: 6 = 4.
{a) From Property 6.3, find an SPRT for which the probabilities of Eooﬂmnﬂ%
rejecting Ho and incorrectly rejecting Hi are both 0.1,

(b) For this SPRT, determine the expected number of observations that éE be
taken if Hp is true and if H1 is true.

fle; 6) =

Exercise 6.31: A sequential sample of independent observations X1, Xz, ... is
taken from the binomial distribution B(5, #). Hop: p = 0.2 is to be tested against
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E:: p = 0.3 and the prior probabilities are Pr[Ho] = 0.3 and Pr[H:! = 0.7. If
the probability of incorrectly rejecting Ho and incorrectly rejecting Hi are botk to
be 0.1,

{a) determine an appropriate SPRT.

{b) For this SPRT, determine the expected sample sizes E{N | Hp), E(N | H1), and
B(N).

Hxercise 6.32: Suggest conditions under which Property 6.2 yields the further
approximations E(N | Hy) = In(K1)/uo and B(N|Hy) = In(Kz)/im.

Exercise 6.33: Suppose 1/K; and K are both large and of similar orders of
magnitude. Show that the Bayes risk given in Property 6.4 is then minimized when
.Nu L= Wwﬁm&n\.ﬁwu..ﬁm‘uu@tow and ,mw‘u =] Huﬂﬁm.&gtw\.ﬁwui”mpwnw.

BExercise 6.34: Suppose X1, X, ... is a sequential sample from a Poisson distris
bution with mean ¢ and Ho: & = 2 is to be tested against Hi: § = 3. The prior
probabilities are £ that 6 = 2 and 1 that # = 3. The loss in incorrectly accepting
Hy is 50, from incorrectly accepting Hi is 25, and there is no loss from a correct
decision. The cost of each observation is ¢ = 0.001. Using the approxdmations in
Exercise 6.33, determine

(a) K, and K, for the Bayes SPRT,

{(b) the Bayes risk for this SPRT.
Exercise 6.35: Consider the situation in Exercise 6.31. Suppose sach observation
costs 0.01 and the loss for incorrectly rejecting Hp or Hy is 10.

{a) Determine the Bayes risk for the SPRT found in Exercise 6.31.

(b) Suppose the SPRT is changed so that X3 and Kb are given by the approxima-
tions found in Exercise 6.33. Determine the expected sample sizes £(N | Hq)
and E(N | H1) for this SPRT and alsc determine its Bayes risk.
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7
Bayesian inference

7.1 Introduction

The previcus chapter introduced some elements of Bayesian inference. These
will be discussed further now, together with additional topics. In some cases
the Bayesian approach and the frequentist (or classical) approach have clear
similarities. For example, In the next section we give the Bayesian definition
of sufficiency and show its equivalence to the frequentist definition. We also
find that Bayesian interval estimates are often numerically equal to frequentist
confidence intervals when an uninformative prior distribution is used. With
other topics, such as hypothesis testing, we mﬁa marked differences between
the two approaches.

The form of the prior distribution plays an important role in much of this
chapter. Improper prior distributions can cause problems in hypothesis test-
ing. Hierarchical prior distributions (Introduced in Section 7.7) can be used
to model structural relationships between parameters, illustrating the Hexd-
bility that results from treating unknown parameters as r.vs. Empirical Bayes
methods are also discussed, in which past data are used to construct 2 prior
distribution.

7.2 Sufficiency

The Bayesian definition of sufficiency is based on the distribution of 8, but,
as we will show, it Is equivalent to the frequentist definition given earlier. The
notation used is the same as in Chapter 8.

Definition 7.1 A statistic T(X1,Xs,...,X,) is sufficient for 8 if and only
if the posterior distribution of 8 given Xy, Xa,...,Xn 15 the same as the
posterior distribution of 8 given 7.

Theorem 7.1 Definitions 2.5 and 7.1 are equivelent.

Proof Suppose that T satisfies Definition 2.5. Then, leaving out terms
which do not depend on 8, we have

H(@;0) = g(= |1, 6)A(t | 6) e h{z|8),

because g does not depend on 6.
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and Hi, respectively, and there is nc loss for a correct decision. Then, from
Lemma 6.1, the EB test is to reject Hy if

Liotize) . _Ba (7.28)
Lt @) — (1 -850
Example 7.10 Fori=1,2,...,k%, suppose X; ~ N(8;,5%) with o known and

the hypotheses are Ho: € = uo vs Hi: 6, = p1, with pa > uo. From Example 5.6,
Hy is rejected if

o> Lo+ sl £
% > 5 (o + o) + Atnguﬁmﬁrwv@vu

provided $ & (0,1). If § == 0, then Hy is rejected regardless of the value of =, while
i § = 1, then Hp is always accepted. O

A disadvantage of many EB methods is that the estimate p(f) is treated
as if it were actually p(9); no allowance is made for the uncertainty of thé esti-
mate. In the last example, for instance, if £ > p1, then $ = 0 and Hy is rejected
for any value of z;. This is unreasonable if & is based on a small set of data.

Forming confidence imtervals is ome task where allowance is sometimes
made for the uncertainty n $(8). Let I(H(F)) be the a% Bayesian credible
interval for 8, when 5(#) is taken as the prior distribution for 8. The cover-

age of the interval, C [I (§(8))] = Pr{¢ € I ($(8))], is the posterior probability, .

given p(8) and the data, that the interval actvally contains 4. One useful mea-
sure of the level of confidence to associate with I{5(#)) is its expected coverage,

E[CII@ENN,

where the expectation is with respect to variation of ${#). Determining the
expected coverage is usually difficult, but approximaticns using Taylor expan-
sions are possible when p{8) has a known parametric form. Scme examples
are given in Maritz and Lwin {1989, Chapter 6) and a practical application
is given by Martz and Zimmer (1982).

In discussing EB we have assumed throughout that a single observation, z;,
is obtained for each ;. Clearly the methods can be extended straightforwardly
to cases where there are several observations for each 4;.

In situations where EB can be used, an obvicus alternative is to use hiex-
archical Bayesian models, as the §; are exchangeable. When the two methods
use the same prior distribution, p(8), they typically give similar estimators.

7.9 Exercises

Exercise 7.1:

{a) Suppose X3, X2, ..., X, are i.id. observations from a Poisson distribution
with mean € and let p(8) be the prior distribution for §. Give an expression for
the pesterior distribution of 8, g1 (6; z), ignoring cornstants of proportionality.
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{b) Suppose ¥ is an observation from a Poissor distribution with mean né and p(6)
is the prior distribution of . Show that the posterior distribution of 8, gz(8; v,
is the same as ¢ (6; ).

(¢) Use Definition 7.1 to conclude that ¥ = 57 | X; is sufficient for 6.

Exercise T.2: Suppose X1, Xa, .
tion parameserized by €.

{a) Suppose also that, in the likelihood, the X's can be replaced by functions
(X, ..., X)) and Th{Xy, ..., X,). Show that T) and T% are sufficient for
é.

, Xr form a random sample from a distribu-

(b) If cbservations are from the gamma distribution, X; ~ [{a, 8), determine
sufficient statisties for & = (@, 8) and give a conjugate prior distribution for 8
up to a constant of proportionality.

Exercise 7.3: Show that

e 8) =

—=f
?Z z+ 1™, (z>0)

is, for any € > 0, a p.d.f. A random sample of size n is taken from this p.d.f. giving
values z1, To, ..., Tn.
{a) What is the lkelihood function (ignore constants of proportionality)?
(o) Give function(s) of 21, ..., zn which are sufficient for 4.
(¢} Give the conjugate prior distribution for 6.
(d) Obtain the posterior distribution for § using this prior and compare its form
with that of the pricr distribution. ,

Exercise 7.4: Suppese X1, ..., Xn are L.id. with probability densities

R..huua..w mv = mwawi munUﬁ m,ﬂauu z; >0, 8>0,

where b is a loown positive constant. Obtain the natural conjugate prior distribution
for 8 (ignore constants of proportionality) and show that it is a conjugate prior
distribution.

Exercise 7.5: mc%d.umm X1, Xa, .

) %r are a random sample from the uniform
distribution U8 — 3,

éwmu.m 33 {—00, o) is unknown.

(a) Show that the mSm&mm& and largest of X3, ..., X, are jointly sufficient for 4.

(b) I p(6) = constant, § € (~oc, o), is the prior distribution of 4, find its posterior
distribution.

Exercise 7.6: Suppose the posterior distribution of ¢ is a t-distribution with 10
degrees of freedom. Give a 95% me,mp ~tailed credible interval for 8. Is this interval
also an HPD intarval?

Exercise 7.7: Suppose the posterior &m&&.ocaou of 8 is
g(6; z) =49 - 36>, 0<O<1.

Determine a 90% equal-tailed credible interval for 4.

Exercise 7.8: Suppose {a, b) is the 1 — & HPD credible interval for & and ¢ =
¢+ k6 {c > T,k > 0}. Show that (c+ ka, ¢+ kb) is the 1 — o HPD credible interval
for ¢.
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Exercise 7.9: A random sample of size 25 from N(4, 1) has mean 0.30.
(a) Given that () o« constant, § € (—oo, 00), determine a 95% HPD credible
interval for 0.
(b} Given that @ is known to be positive, so that

() o< constant, 08>0

determine a 95% HPD credible interval for 4.

Exercise 7.10: Prior information on the mean 8 of a Poisson distribution is such
that the prior mean and prier variance of 8 are both unity.
(a) Determine a conjugate prior density having these properties.

{b) Find the corresponding posterior density of ¢ given a random sample of n
observetions from the Poisson distribution.

(¢} Derive mxvummmpoﬁu in terms of n, the sample observations, and probability
points of a % distribution, for the lmits of the l-go mndﬁémtmn credible
interval for 8. [Hint: Tf f(z) oc 2* 7 €% and ¥ = 28X, then ¥ ~ x*(2a}]

Exercise 7.11: Suppose the posterior distribution of ¢ is

8, 0<6<1
%vlfrmd 1<8<2

(2) Show that (+/0.03, 2 — v/0.05) is a 95% HPD credible interval for .
(b) Let ¢ =42
{i} Show that 0.05, {2 ~ +/0.05}%) is a 65% credible interval for ¢ and verify
that it is not a 95% HPD interval.

(ii) Find a 95% EPD interval for .
(iii) Explain why there are an infinite number of 40% HPD credible intervals
for ¢.

Exercise 7.12: Suppose 1.03, 0.20, 1.21, 3.31, and 1.49 are a random sample of
five observations from the Weibull distribution

flz) = mmlnamlﬁu\muu, z>0.

Ho: 8 = 2 is to be tested against H:: 8 = 3. Determine the posterior odds, @~

Exercise 7.13: Suppose that X is the number of suecesses in 3 binomial mxumn,
iment with n trials and probability of success 8. Either Ho: 8 = 5 or H1: 8 = p
true. Show that the posterior probability that Hp is true is m..nmmdmw than the vﬁon
probability for Hy if and only if

z1n{3) < nln(2).

Exercise 7.14: Let @ be a person’s IQ and suppose that in the population § ~
N{100, 225). A perscn’s score on an IQ test, X, is an unbiased but imprecise measure
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of 8, X ~ N{8, 50}. Jane takes the test. Let 8y dencte her true IQ and suppose she
scored 120 on the test.

{a) Calculate the posterior distribution of 8;.

(b) Define the hypotheses Hg: 9; > 110 and Hi: 87 < 110. Using tables for the

standard normal distribution, determine the posterior odds ratio that Jane's
1Q is above 110.

Exercise 7.15: Let Xy, X2, ..., X» be a random sample from an exponential
distribution, f(z; 6) = 6e™%%, z V 0, 6 > 0. Suppese we wish to test Ho: ¢ = 1
againgt Hy: @ 5% 1, where Pr{Hy] = p and Pr{H1] = 1 — p. If the prior distribution
for 8, given Hy, is

p1(8] Hr) = 876%™ T(a), 621,

determine the posterior odds Q™ = Pr{Hg | =]/ Pr[Hy | =] using (a) eqn (7.10) and
{b) eqn (7.13).

Exercise 7.16: Let X1, X2, ..., X» be arandom m“m,EEm from N{4, 1). There are
two hypotheses, Ho: 6 = 1 and Hi, where PrHy] = p and Pr{Hi]=1-p.

ﬁ.m.u Given that Hy specifies § = —1, show that

_.UmMUﬂa
PR e T

Pr[Hy | x] =
(&) Given that H specifies § # 1 and gives § the prior distribution
1
P Hy) = Wi exp(—67/2), 0#1,
‘determine Pr(Hp | z] when ¥z =
Exercise 7.17: Determine the marginal posterior distributions of 6 and A when
their joint distribution is

(a) g8, X) =

9
>0, A>0,

S + 84+ AP’
(b} 4(8, \cslmuy- D<f<3, 0<A<S,
{e) g(8, M) = Séu /4, #FagL

Exercise 7.18: In order to measure the intensity, ¢, of a source of radiation in
2 noisy environment a measurement X1 is taken without the source present and
a second, independent measurement Xz is taken with it present. It is known that
X1 s Nu, 1) and X2 is N(p + 6, 1), where u is the mean noise level. The prior
distribution for 4 is N{ue, 1) while the prior distribution fer 8 is constant. {Thus ¢
is kmown with some accuracy while Little is kmown about 6.)

(a) Write down (apart fom 2 constant of proportionality) the joint posterior
distribution of u and 8.
(b} Hence obtain the posterior marginal distribution of 4.

(¢) Tke usual estimate of § is 2z — 2. Explain why (222 — 1 — po) might be
better.
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Fxercise 7.19: The number of phone calls 2 man receives in a week follows a
Poisson distribution with mean . At one point in tirme, the man’s opinion about
the value of § corresponds to the gamma distribution:

2(8) = H8% 5, 6>

In the next 4 weeks the man received 3, 7, 8, and 10 phone calls, respectively.
Determine the distribution that should now represent his opinion about @ and find
the predictive distribution for the number of calls he will receive in week 5.
Exercise T.20: Independent observations X1, Xz, ..., X10 from a power distri-
bution with p.d.f.

fa; 9y =82"1 0<z<l, 8>0

take the values 0.91, 0.41, 0.99, 0.08, 0.90, 0.76, 0.39, .98, 0.78, 0.31. If the prior
distribution for 8 is such that 8/0.075 has a x3, distribution. (i.e. p(8) cc 8%8579),
find the posterior distribution of 4.

Find also the predictive distribution for a further independent observation, X1:.
Given that m is the best prediction of X1 under a linear loss function, show that

m satisfies 2
12.51 — 05,
12.51 — In(m)

Exercise 7.21: Suppose a random sample of 18 independent observations from
N(81, 400) has a mean of 70 and an independent random sample of 25 observations
from N(fa, 600) has a mean of 3. A priori nothing is known about 41 or &2, so
non-informative prior distributions py(#1) = constant and p2{fs) = constant are
deemed appropriate.

{a) What is the posterior distribution of (i} 6; and (i) 827

(o) Put 7 = §; — 82 and determine the joint pesterior distribution of 1 and 8-
through a change of variables.

{¢) Hence find the marginal posterior distribution of .

Exercise 7.22: The unknown means of two Poisson distributions are #; and &,
and these have independent and identical prior distributicns

P(8) x 6% @y > -1, 02 >0

A single observation from each Poisson distribution is taken, giving values 1 and
T, respectively. If n = 8:/(6; + 62), show that the posterior distribution of 1 is
.Umﬁm.ﬁﬁu. gy ok 1, 2o g b ..C.

Exercise 7.23: Suppose independent samples of sizes ny and ng are taken from
two normal distributions with known means, g1 and ge, and unknown precisions,
1 and 2. For i = 1,2, let r = 3 (2 — )%, where {@a, Zi2,...,%in, } = 2 ATE
the obeervations from population {. Show thab

(rs 4 @i)0s ~ Xfngprszy fori=1,2.

Hence derive eqn (7.17).

Exercise 7.24: Suppose X1, Xa,... is a sequential sample frem a B(1, 6) distsi-
bution and we have an uninformative prior distribution for 8,p(6) = 67 (1 — 8)™1.
Suppose also that # is to be estimated under a quadratic loss function.
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(a) After observing @1, T2, ..., Tn, show that Z. = (1/n) 3 z: is the Bayes's
estimate of 4.

(b) Suppose the following stopping rule is used. Take X; and stop if Xy = 1. If
X1 =0, take X and then stop, regardless of the value of Xz. Show that, using
frequentist methods, B[X] = § + £6(1 — 6). {Thus, from a frequentist per-
spective, the Bayes’s estimator is biased under this stopping rule. A Bayesian
might argue that it is not important for an estimator to satisfy the frequentist
definition of unbiasedness.)

Exercise 7.25: Suppose k different pecple repeatedly perform a test that results
in success or failure. Let X be the number of successes the ith person obtains in
n; irials. Assume X; ~ B(n., pi), where the p; vary between people but assume
that, a priori, the p; are exchangeable. Construct a hierarchical model in which
the p; are independent values from a beta distribution whose parameters have an
uninformative prior distribution. Form an equation equivalent to eqn (7.19) and
explain how estimates of the p; could be obtained.

Exercise 7.26: Random samples of sizes ﬁrwuu and ng are taken from three
Poisson distributions whose means are 61,82, and #3. Specifically,

Kij ~ Polsson (8:;) fori==1,2,3 7=1,..., 7.

A priori, the #; are exchangeable. Explain what is meant by ezchangeable in this
context and suggest an appropriate hierarchical model for the data.

Exercise 7.27: Derive eqn (7.21) from eqn (7.20). [Note that §(8; — §/66; =
(k—1)(8: —8)/k]

Exercise 7.28: For Example 7.8: -

(a) show that Xi, ..., X are jointly suffcient for (8, ..., Ok, @, 72);
(&) put £(@:; &, 7°) = [ f(Z; 0i, 6, +%)p{6:; 6, 7°) d6; and shew that

23| 6,77 ~ N(¢, 7% + 67 fra);

{c) suppose the same number of children are tested in each school, so that
n; = p for all 4. Using (b) and the result found in Example 6.3, show that
¢ 75, ., B~ N Z/k, {7+ 0% /n}/k).

Exercise 7.29: Suppose (2, 8),i = 1,2, ..., k is a sequence of i.i.d. bivariate
r.vs for which only the z; are observable. Suppose also that each z; has 2 bino-
mial distribution, B{n, ¢;), and 6; ~ beta(e, ). Show that, using the method of
moments, the EB estimates of & and 3 are

=3

=2 -
NE* - T¥ - T§
o=

2

5= (n — &) (n& — & - 5%)
- NS2 — N o T2

H b

nst — nE 4+ 32
where £ and s° are the sample mean and variance of £, ..., k.
Exercise 7.30: Suppose X:|8; ~ N{§;, 1), where X1, ..., Xi are independent
and & ~ N(u, o), where 61, ..., f; are independent. Determire ER estimates of
wand ¢°

(a) using the method of moments;

(b) using maximum likelihood.
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Exercise 7. ..w“_. Suppose j(Zi; f:} is the geometric distribution f (24 6.) = 6:(1 —
gl i=1,2 , k, and G must be estimated under a squared-error loss fune-
tion. Show that { %ﬁui ~ flzw 4 1)}/ f(zx) is a non-parametric EB estimator of
8r. Given that the 9; are independent and identically distributed, explain how this
expression can be used to estimate 8y from =1, 22, ..., Ta-

Exercise 7.32: Suppose (Xi, 8:) i3 a sequence of binary r.vs in which the 6
are identically distributed, 2 = 1,2, ..., k. Suppose X; | & ~ B{n;, 8;), where
721, ..., Tok are predetermined oonmwmu."m mb& let fa(z; 8) denote the p.d.f of the
binomial distribution B(xn, 9).

{(a) Show that ‘
(z+ 1) fati(z 4+ 1)
(m+1)fnlz)

(b) Suggest how this result might be used to obtain 2 non-parametric EB estimator
of @ under a squared-error loss function.

= B8] 2).

Exercise 7.33: Suppose an observation comes from the uniform distribution
U(0, 8o) with probability » and from U(0, 91} with probability 1 - p, where fy < 6.
Out of k& independent observations, n were in the range (0, §y) while the remaining
k — n were in the range (g, 81). Show that the MLE of p is
by wied) .
p= Hlﬁmum[i.l.wmw“ fn> WQO\QH
0, fn<kf/6.

Given that n > kfo/91, predict the value of the next observation when error in
prediction is penalized by a linear loss function.
Hxercise 7.34: For i = 1, 2, ..., suppose #; can take one of two values, 0.2 or
0.5 (some &; equal 0.2, while others egual 0.5). Let p = Pr{f; = 0.2) and L ~p =
Prf; = 0.5]. Suppose we have 20 independent observations =1, @z, - .-, Tz, Where
Flaze; 8:) = 8,67% for = > 0, and that Dz = 60.

(a} Use the method of moments to estimate p.

(b} Calculate the probability that the next observation, Xap will exceed 4,

{¢} Suprose one must choose between Hy: fay == 0.2 and Hy: 8z = 0.5, and the
loss for incorrectly rejecting Hp is 10 and for incorrectly rejecting Hy is 5. For
what vaiues of zg; should Hy be accepted and for what values should it be
rejected?

Exercise 7.35: mﬁﬁﬁo% 1.5, 1.7, 2.1, 1.8, m.um 1.3 are a random sample of five
observations from N{8, ¢%), where both 8 and o are waknown.

{a) Stating any formulae you use, give the MLEs of # and o*.

{b) Using these estimates, form a naive 35% EB confidende interval for 8. Criticize
this interval.

3

Non-parametric and
robust inference

8.1 Introduction

In much of inference, for both the frequentist and Bayesian approaches, there
is an assumption that we know the form of the p.d.f. f(z;8), apart from the
values of one or more parameters #. In practice, this is often an unrealistic
assumption. For example, a distribution may be approximately normal, but it
is rarely exactly sc. In more extreme cases, we have little confidence that we
can correctly specify a parametric form for a p.d.f. This occurs particularly
when only a small sample of observations is available, so that the shape of the
distribution is not easily estimated.

It is therefore desirable to construct methods of inference which do not
depend on distributional assumptions for their validity, or which are relatively
insensitive to any distributional assumptions made. These two requirements
lead us to the topics of non-parametric inference and robust inference, which
are discussed in this chapter. Non-parametric methods require relatively weak
distributional assurnptions for their validisy, while robust methods malke infer-
ences that are little affected by a small number of cutliers in the data or
slight departures from the distributional assumptions. We also consider the
important problem of testing to see if a specified parametric model is appro-
priate. In addition, there is a brief description of semi-parametric methods
which occupy an intermcediate position between non-parametric inference
and approaches described in earlier chapters. (Approaches thai make full
distributional assumptions are termed parametric methods.) Some types of
computationally intensive methods are nop-parametric in rature. Among
these, permutation tests are introduced in this chapter, but discussion of
other computationally intensive approaches is deferred until Chapter 9.

Suppose, as usual, that we have a random sample (51, %2, ..., %) from a
probability distribution with p.d.f. f{z;4), but that we do not know f{z;8).
In previous chapters the form of f{z; 0} was assumed known, except for the
value of the parameter(s), 4, and our objective was to make inferences about
9. If we do not know the form of f{z;8) then it is not immediately obvious
what we mean by ‘inference about 8. However, there are certain parameters of



