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Example 6.1.6. In Example 6.1.1, we discussed the mie of the probability of

success 8 for a random sample X1, Xz, ..., X, from the Bernoulli distribution with
pmf
18t z=0,1
p(z) = A elsewhere,

where 0 < 4 < 1. Recall that the mle is X, the proportion of sample successes.
Now suppose ﬁwma we know in advance ﬁpmﬁ instead of 0 £ 8 < 1, 8 is restricted
by the inequalities 0 € ¢ < 1/3. If the cbservations were such that T > 1/3, then
T would not be a satisfactory estimate. Since Ww@ >0, ?.oﬁm.o@ 8 < &, under the

restriction 0 < @ < 1/3, we can maximize [{#) by taking 8= Emﬂ. ML. n
The following is an appealing property of maximum, likelihood estimates.

Theorem 6.1.2. Let Xy,..., X, be tid with the pdf f(z; 8 8 € Q. For o specified
.?3&83 g, let n=g{f) be a parameter of interest. Suppose & is the mie of 8. Then
9(@) is the mie of = g{#).

Proof: First suppose g is a one-to-one funetion. The likelihood of interest is L(g(8)),
but because ¢ is one-to-one,

max L{g(6)) = max L(n) = max Lig™ (m).

But the maximum occurs when g~1(n) = 8; i.e., take 7 = m_ﬁy
Suppose g is not one-to-one. For each 7 in the range of g, define the set (preim-

age),
g i my=1{8: 9(8) =}

The maximum occurs at 8 and the domain of g is € which covers 8. Hence, g is
in one of these ﬁnmgmmmm and, In fact, it can only be in one preimage. Hence to
Bmuc.BEm L{n}, choose 7 so that g~ (%) is that unique preimage containing 5. Then

=g(6). m

In Example 6.1.5, it might be of interest to estimate Var(X) = 6%/12. Hence
by Theorem 6.1.2, the mle is max{X;}?/12. Next, consider Example 6.1.1, where
Xi,..., Xpn are iid Bernoulli random variables with probability of success p. As
shown in the example, 7 = X is the mle of p. Recall that in the large sample
confidence interval for p, (5.4.8), an estimate of 1/p{1 — p) is required. By Theorem
6.1.2, the mle of this quantity is /5(1 — p)- ,

We close this section by showing that maximum likelihood estimators, under
regularity conditions, are consistent estimators. Recall that X' = (Xy,..., X5).

Theorem 6.1.3. Assume that X1,..., X, satisfy the reqularity conditions (RG) -
(R2), where 8y is the true parameter, and further that f(z;0) is differentiable with
respect to § in Q. Then the likelihood eguation,

-
5

-— 1 L h
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or eguivalently 5
i () =
5 {#) =0

has e solution m,; such that w,: KA Ba.

Proof: Because g is an interior point in , {8 — a,8 +a) C £, for some a > 0.
Define 8, to be the event
S = (X1 Ui X) > ldo — s X)} 1 {X 2 1003 X) > 8o + 35 K)}

By Theorem 6.1.1, P(8,) — 1. So we can restrict attention to the event S,. But on
8., 1{8) has a local maximum say, 8y, such that g —a < By, < 0 +a and v(8,) =0.
That is, ¢

Sn < {X 1 [Ba(X) -0 < af n{X: 1@X) =0}
Therefore,
1= lim P(S,) < B P :N —Bg| < & A ?ﬁ F(B, (X)) = o: <

mom Remark 4.3.3 moa discussion on . It follows that for the sequence of solutions
:m — byl < a] = 1.

me" only contenticus point in the proof is that the sequence of solutions might
depend on 6. But we can always choose a solution “closest” to 8y in the following
way. For each n, the set of all solutions in the interval is bounded, hence the infimum
over solutions closest to 6y exists. m

Note that this theorem is vague in that it discusses solutions of the equation.
If, however, we know that the mle is the unique solution of the equation I'(8) = 0,
then it is consistent. 'We state this a3 a ¢orollary:

Corollary 6.1.1. Assume that X1,..., X, satisfy the regularity conditions (RG) -
(R2), where 8y is the frue parameter, and that f(z; ) is Aﬁwamﬁﬁg&m with respect
to 9 in Q. Suppose the likelihood equation has the unique solution By. Then Oy, is a
consistent estimator of 8y.

EXERCISES

¥ 6.1.1. Let X3, Xo,..., X, be a random sample from a N{8, o.uq distribution, —o0 <

6 < oo with o known. Determine the mle of .

% 6.1.2. Let X3, X5,..., X, be arandom sample from a Do = 3, 8 = §) distribution,

{ < @ < co. Determine the mle of 8.

+6.1.3. Let X 14250+ Ky, TEPresent a random sample from each of the distributions

baving the following pdfs or pmfs:

(a) flz;9) = e bzl £ = 0,1,3,...,
fo0) =1

0 € & < oo, zero elsewhere, where
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(b) Flm;8) =68z, 0 <z <1, <8< o0, zero elsewhere.
(€) Fflaz;8) = (1/9)e =7, b < 5 < oo, 0 < 8 < o0, zero elsewhere.
(d) flz:8) =", 8 <z <00, ~00 < < 00, zero elsewhere.

T each case find the mle 4 of 4.

6.1.4. Let Y1 < Y3 < --- < Y, be the order ug.ﬂwaom of a random sample from a
distribution with pdf %ﬁﬁ fl=1,0~2<c< g+4 5y —00 < 8 < oo, zero elsewhere.
Show that oﬁm@ mﬂmﬂmﬂo u{Xy,Xa,...,X,) such that

M\d.lm mgﬁuﬂfuﬂwd...u\uﬂﬁu MM\HITW

is a. mle of §. In particular, (4Y; + 25, +1)/6, (¥1 +¥0)/2, and (2] +4¥, ~1)/6
are three such statistics. Thus uniqueness is not, i mmbanﬂ a property of 2 mle.

6.1.5. Suppose X1,...,Xn are iid with pdf f(z;8) = 2z/4%, 0 <z £ 0, zero
mﬁmﬂ&ﬂﬁ find:

(2) The mle 4 for 4.
(b) The constant ¢ so that B{cf) = 4.
{c) The mle for the median of the distribution.

6.1.6. Suppose X1, Xz, - ., Xy are iid with pdf f(=;8) = Q\mumbu\ﬁ b <z < oo,
zero elsewhere. Find the mle of P(X < 2).
6.1.7. Let the table )

a _OHmwpm
Frequency | 6 10 14 13 6 1

represent & summary of a sample of size 50 fromy a binomial distribution having
n = 5. Find the mle of P(X = 3).
6.1.8. Let X1, X2, X3, X4, X5 be 2 random sample from a Cauchy distribution with
median 8, that is, with pdf.
1 1
3 IR e em— < ]

Fflz; ) = STT e 00 < < 00
where =00 < 8 < 00, If & = —1.84, 72 = 0.59, £5 = —5.98, z; = —0.08, and
x5 = —0.77, find by numerical methods the mle of 8.
6.1.9. Let the table

X _o 1 2
Irequency | 7 14 12

4 5
6 3
fr

3
3
. 2F . s
represent a summary of a random sample of size 50 from a Poisson distribution.
)

Find the maximum. likelibood estimate of P(X =
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6.1.10. Let Xy, X, ..., X, be a random sample from & Bernoulli distribution with
parameter p. If p is restricted so that we know that W < p <1, find the mle of this
parameter.

6.1.11. Let X1, X2,...,X, be random sample from a N{§, o?) distribution, where
o is fixced but —o0 < 6 < co.

(a) Show that the mle of 8 is X.

(b} If 4 is restricted by 0 < § < 0o, show that the mle of 8 is & = Bwiovﬁ.

6.1.12. Let X1, Xy, ..., X, be a random sareple from the Poisson distribution with
0 < 8 < 2. Show that the mle of § is = min{X, 2}.

6.1.13. Let X3, Xs, ..., X, ba random mmﬂﬁm from & distribution with one of two
pdfs, If§ = 1, then flz;0 = 1) = Qﬂmze 2 oo <3< oo, £6 =2, then
Fz; 8 =2) =1/[xr(1 +2%)], ~00 < 3 < co. Find the mle of 6. :

6.2 Rao-Cramér Lower Bound and Efficiency

In this section we establish a remarkable inequality called the Rao-Cramér lower
bound which gives a lower bound on the variance of any unbiased estimate. We then
show that, under regularity conditions, the variances of the maximum likelihood
estimates achieve this lower bound asymptotically.

As In the last section, let X be a Hmﬁaoup variable with pdf f{z;8), 8 € (2, where
the parameter space () is an open interval. In addition to the regularity conditions
(6.1.1) of Section 6.1, for the foliowing derivations, we require two more regularity
conditions given by

Assumptions 6.2.1. (Additional Regularity Conditions).
(R3): The pdf f(z;0) is twice differentiable s o function of 6.

(R4): The integral [ f(x;6) de can be differentiated fwrice under the 3@,«%.& sign
as a ?ﬁoﬁoa of 8.

Note that conditions (R1)-{R4) mean that the parameter § does not appear
in the endpoints of the interval in which f(z;#) > 0 and that we can interchange
integration and differentiation with respect to 4. Our derivation is for the continuous
case but the discrete case can be handled in a similar manner. We begin with the'
identity .
o0

1= \ flz:6) de.
-

Taking the derivative with respect to @ results in,

* 8f(w: )

0=/ "%

dz.
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Q:%BJ 4

. _ s
ANC ~ %Su

&A%EV EN

Figure 6.2.1: Begioning with starting value 10 the ome step estimate is 8%
which is the intersection of the tangent line to the curve I'(8) at \mAB and the
horizontal axds. In the figure, dI{§) = 1'{6}.

EXERCISES

* 6.2.1. Prove that X, the mean of a random sample of size # from a distribution
that is N(8,0%), ~o0 < 8 < vo, is, for every known o2 > 0, an efficient estimator
of 8.

4 6.2.2. Given f(z;6) = 1/8, 0 < = < ¢, zero elsewhere, with > 0, formally
compute the reciprocal of

,;m ﬁyomwﬁmxéﬂ . ;

Compare this witk the variance of (n+ L)Y /n, where ¥;, is the largest observation
of a random sample of size n from this distribution. Comment.

¥ 6.2.3. Given the pdf

1

%aﬁmmungu —00 LT < o0, |..OOA%AOO.‘

Show that the Rao-Cramér lower bound is 2/, where 7 is the size of a random | A
ple from this Cauchy &mﬂa,aﬁﬂcpﬂ Whas is the asymptotic distribution of 1/n(8—4),
if @ is the mle of 87
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6.2.4. Consider Example 5.2.2, where we discussed the location model.

(a) Write the location model when e; has the logistic pdf given in expression
(5.2.8).

{b) Using expression (6.2.8), show that the information, I(¢) = 1/3, for the model
in Part (a). Hint In the integral of expression Ami.wu. use the substitution
= (L4 e~ *)~1 Then du= %?\u&ﬁ where f(z) is the pdf (5.2.8).

6.2.5. Using the same location model as in Part (a) Exercise 6.2.4, obtain the ARE
of the sample median to mle of the model.

Hint: The mle of & for this model is discussed in Example 6.2.7. Furthermore as
shown in Theorem 10.2.3 of Chapter 10, @ is asymptotically normal with asymp-
totic mean ¢ and asymptotic variance 1/(4f2(0)n).

6.2.6. Consider a location model {Exampie 6.2.2) when the error pdf is the con-
taminated normal (3.4.14) with ¢ proportion of contamination and with o2 as the
variance of the contaminated part. Show that the ARE of the sample median to
the sample mean is given by

2 +elo? ~ D[l ~e+ ﬁm\qn:m.
iy

Use the hint in Exercise 6.2.5 for the median.

mﬁﬁwuw”mlu =

(6.2.34)

(a) If 02 = 9, use (6.2.34) <o fill in the following table:

€ 0005010015
(@2, X)

(b) Notice from the table that the sample median becomes the “better” estimator
when ¢ increases from 0.10 to 0.15. Determine the vaiue for ¢ where this occurs
{this invelves a third degree poiynomial in ¢, so one way of obtaining the root
is to use the Newton algorithm discussed around expression (6.2.32)).

T 6.2.7. Let X have a gamma distribution with e =4 and =0 > 0.
(a) Find the Fisher information I(#).

(b) ¥ X;,Xs,...,X, is a random sample from this distribution, show that the
mle of @ is an efficient estimator of 6.

(c) What is the asymptotic distributior of \/7(@ — 6)?
% 6.2.8. Let X be N(0,6), 0 < < oc.
(a) Find the Fisher information I(8).

(b) If X3, Xs,..., X, is a random sample from this distribution, show that the
mle of € is an efficient estimator of 6.
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-~

{c) Whas is the asymptotic distribution of /{8 — §)7
¥ 6.2.9. If X1, Xs,..., X, is a random sample from a distribution with pdf

39°
Trd)® I<e<o,i<f<oo

Flzi0) = elsewhere.

Show that ¥ = 2X is an unbiased estimator of § and determine its eficiency.

¥ 6.2.10. Let X3, X5,..., X, be a random sample from a N(Q,§)} distribution. We
want to estimate the standard deviation /8. Find the constant ¢ so that ¥ =
T

aM”_Nﬂ._ is an unbiased estimator of +/@ and determine its efficiency.
=l

% 6.2.11. Let X be the mesn of a random sample of size n from a N(8, %) distribu-

2

s .
tion, —c0 < § < 00,0? > (. Assume that 0% is known. Show that X — Z isan
unbiased estimator of 62 and find its efficiency. .

* 6.2.12. Recall that § = —15) 3 r Yog X is the mele of 4 for a Beta(d, 1) &mﬁﬂvﬁﬁoﬁ,
Also, W = -7 log X; has the gamma distribution I'(n,1/9).

{a) Show that 26W has a x?(2n) distribution. r

(b) Using Part (a), ind ¢1 and ¢z so that

WAQPAWMJ@ASVHH?P

for 0 < & < 1. Next, obtain 2 {1 — )100% confidence interval for 4.

(¢) Let n = 10 and compare the length of this interval with the length of the
interval found in Example 6.2.6. .

g
6.2.13. By using expressions (6.2.21) and (6.2.22) obtain the result for the one-step
estimate discussed at the end of this section.
¥ 6.2.14. Let 52 be the sample variance of a random sample of size n > 1 from
N(u,8), 0 < 9 < oo, where u is known. We know E{S%) =4. "

(a) What is the efficiency of $%?
(b) Under these conditions, what is the mle § of 67

(¢) What is the asymptotic distribution of /(8 — §)?
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6.3 Maximum Likelihood Tests

The last section presented an inference for pointwise estimation and confidence
intervals based on likelihood theory. In this section, we present a corresponding
inference for testing hypotheses,

As in the last section, let X1,..., X, be fid with pdf f(z; ) for # € Q. In this
section, & is a scalar but in Sections 6.4 and 6.5 extensions to the vector valued case
will be discussed. Consider the two-sided hypotheses

Ho: 6=, versus Hy : 0 # 6, . (6.3.1)

where g is a specified value.
Recall that the likelihood function and its log are given by:

W%AN&S

D log £(X:;6).

i=1

10)

18)

Let & denote the maximum likelihood estimate of .

To motivate the test, consider Theorem 6.1.1 which says that if 8 is the true
value of & then, asymptotically, L{fo) is the maxdmum value of L{#). Consider the
ratio of two likelihood functions, namely

L{6s)
L{#)
Note that A < 1, but if Hp is true A should be large (close to 1); while, if Hy Is true,

A should be smaller. For a specified significance level o, this leads to the intuitive
decision rule,

A=

(6.3.2)

Reject Hp in favor of Hy if A < ¢, (6.3.3)

where ¢ Is such that @ = Pg,[A < ¢]. This test is called the likelihood ratio test.
Theorem 6.3.1 derives the asymptotic distribution of A under Hy, but first we will
look at two @S.S%m

Example 6.3.1 Aﬁ%mrroom Ratio Test for the Exponential Distribution)-
Suppose X3,..., X, are iid with pdf f(z;8) = 6~ exp {—z/0}, for z,6 > 0. Let
the hypotheses .Um giver by {6.3.1). The likelihood function simplifies to

L(8) = 0" exp ﬁtmawmvmﬁs

From Example 6.1.2, the mle of 8 is X. After some simplification, the likelihood
ratio test statistic simplifies to

>|m @M v @éTﬁM\m&. a.mb
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Example 6.3.4 (Likelihood Tests for the Laplace Location Model). Con-
sider the location model

X;=0+e¢, t=1...,1,

where —o0 < § < oo and the random errors ¢;s are iid each having the Laplace pdf,
(6.2.9). Technically, the Laplace distribution does not satisfy 2ll of the regularity
conditions (RO} - (R3) but the results below can be derived rigorously; see, for
example, Hettmansperger and McKean (1998). Consider testing the hypotheses

Hy: 9= 0y versus Hy : 8 # o,

where fp is specified. Here 2 = (~w0,00) and w = {f}. By Example m.u”.m_ we
know that the mle of § under 0 is @2 = med{X ..., X,}, the sample median. It
follows that

L) =2 exp{- W |25 — Qal},

duml
while "
L(G) =2 exp{— 3 |z: ~ fal}- :
i=1
Hence, the negative of twice the log of the likelihood ratio test statistic is
~2log A=2|S |z~ O] — Y |z~ Qaf | . (6.3.24)
=1 =1

Thus the size @ asymptotic likelihood ratio test for Hy versus H; rejects Hp in favor
of H- 1 if
M |z; — 6ol — M s = Qal| 2 XE(D)-
=1
By (6.2.10), the Fisher information for anm model is [(§) = 1. Thus the Wald type
test statistic simplifies to .
Xy = V(@2 — %))

For the scores test, we have

-0
dlog .Mmr -6 . = Tom —Jas = m; = sgn(z; — §). ’

Hence, the score vector for this model is $(8) = (sgn(X; - 8),. .._mmn.ﬁn.‘a - Y.
From the above discussion, (see equation (6.3.17)), the scores test statistic can be
written as ‘

Xk = (5" /n,

where

= Mummbﬂﬁ. — a)-
i=]

As Exercise 6.3.4 shows, tinder Hp, S* is a linear function of a random variable with
2 b(n, 1/2) distribution. m
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Which of the three tests should we use? Based on the above discussion, mﬁ
three tests are asymptotically equivalent under the null hypothesis. Sirnilar to the
concept of asymptotic relative efficiency (ARE) we can derive an equivalent concept
of efficiency for tests; see Chapter 10 and more advanced books such as Hettman-
sperger and McKean (1998). However, all three tests have the same asymptotic
efficiency. Hence, asymptotic theory offers little help in separating the tests. There
have been finite sample comparisons in the literature; but these studies have not
selected any of these as a “best” test overall; see Chapter 7 of Lehmann (1999} for
more discussion.

EXFERCISES

6.3.1. Consider the decision rule (6.3.5) derived in Example 6.3.1. Obtain the
distribution of the test statistic under a general alternative and use it to obtain
the power function of the test. If computational facilities are available, sketch this
power curve for the case when 6y = 1, n == 10, and & = 0.05.

6.3.2. Show zpma the fest with decision rule (6.3.6) is like that of Example 5.6.1
except here o2 is known.

6.3.3. Consider the decision rule (6.3.6) derived in Example 6.3.2. Obtain an
equivalent test statistic which has 2 standard normal distribution under Hy. Next
obtain the distribution of this test statistic under a general alternative and use it
to obtain the power function of the test. If computational facilities are available,
sketch this power curve for the case when 6y =0, n =10, ¢ = 1, and o = 0.05.

6.3.4. Consider Example 6.3.4.
(2} Show that we can write §* = 2T —n where T = #{X; > 6g}.

(b} Show that the scores test for this model is equivalent to rejecting Ho if T < ¢;
or T > e3.

{c) Show that under Hyp, 7" has the binomial distribution b(n, 1/2); hence, deter-
mine ¢; and ¢z so the test has size a.

(d) Determine the power function for the test based on T as a function of 6.

6.3.5. Let X3, Xs,..., X, be a random sample from & N(uo, o® = §) distribution,
where 0 < 6 < oo and g is known. Show that the likelihood ratio test of Hp ¢ 6 = 4
versus Hy : 6 # 6y can be based upon the statistic W = 0 (Xi — po)?/6o-
Determine the EE distribution. of W and give, explicitly, the H.&moﬂon rule for a
level o test.

¥ 6.3.6. For the test described in Exercise 6.3.5, obtaln the distribution of the test

statistic under general alternatives. If computational facilities are available, sketch
this power curve for the case when @y == 1, n =10, = 0, and & = 0.05.

6.3.7. Using the results of Example 6.2.4, find an exact size o test for the hypotheses
{6.3.21).

T e <o e, e
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4 6.3.8. Let X3, X2,..., Xn be a random sample om 2 Poisson distribution with
mean & > 0.

{a) Show that the likelihood ratio test of Hy : & = 8 versus Hy : 8 # 0 is based
upon the statistic ¥ = 3°7 | X;. Oblain the null distribution of ¥

{b) For 8y =2 and n = 5, find the significance level of the test that rejects Hy if
Y<4corY =17.

* 6.3.9. Let X3, Xz, ..., X, be a random sample from a Bernoulli 5(1, ¢ distribution,
where 0 < @ < 1.

(a) Show that the likelihood ratio test of Ho : & = 8 versus Hy @ @ # fo is based
upon the statistic Y = ¢ | X;. Obtain the null distribution of ¥,

{b) For n =100 and 8y = 1/2, find ¢; so that the test rejects Ho when ¥ < ¢y or
Y > ¢z == 100 - ¢; has the approximate significance level of & = 0.05. Hint:
Use the Central Limit Theorem.

* 6.3.10. Let X1,X2,..., %, be a random sample from a T{e = 3,3 = §) distribu-
tion, where 0 < € < co.

{a) Show that the likelihood ratio test of Hq : & = 8 versus H1 : 8 7 0o s based
upon the statistic W= Y o X;. Obtain the aull distribution of 2W/8;.

(b) Yor 63 = 3 and n = 5, find ¢; and ¢z so that the test that rejects Hp when
W < ¢ or W = ¢ has significance level 0.05.

¥ 6.3.11. Let X1,Xa,...,Xn be a random sample from = distribution with pdf
Fflz:8) = exp {—|2|*} /2T(1/8), ~00 < = < oo, where § > 0. Suppose 2 =
{6 : 9 = 1,2}. Consider the hypotheses Hp : § = 2 {a normal distribution) versus
H; : 8 =1 (a double exporential distribution}. Show that the likelihood ratio test
can be based on the statistic W = Yo, (XF - | X))

* 6.3.12. Let X1, Xs,..., X, be a random sample from the beta distribution with
a=3=0and & ={f:8&=1,2}. Show that the likelihood ratio test statistic
A for testing Hy : § = 1 versus Fy : § = 2 is a function of the statistic W =
S log X4+ 3oy log (1 — X) 4

6.3.13. Consider a location model
X =f+te, i=1l,...,m (6.3.25)

where 1, €3,..., e, ave iid with pdf f(z). There is a nice geometric interpretation
for estimating #. Let X = (X1,...,X,) and e = (e1,...,e,)" be the vectors of
observations and random error, respectively, and let g = 61 where 1 is a vector
with all components equal to one. Let V' be the subspace of vectors of the form p;
ie, V ={v:v=al, for some a € R}. Then in vector notation we can write the
model as ¢
X=pte, peV (6.3.26)
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Then we can summarize the model by saying, “Except for the random error vector
e, X would reside in V.” Hence, it makes sense intuitively to estimate g by a vector
in V which is “closest” to X. That is, given a norm | - | in ™ choose

fi=Argmin|X-vl, veV. (6.3.27)

(a) .Mmgm error pdf is the Laplace, (6.2.9), show that the minimization in (6.3.27)
is equivalent to maximizing the likelthood, when the norm is the /; norm given
by

vz = Msu [ A (6.3.28)
2=l

(b) If the error pdf is the N(0, 1), show that the minimization in (6.3.27) is equiv-
alent to maximizing the likelihood, when the norm is given by the square of
the iy norm

n
Iv|E =" "2 (6.3.29)
=1
6.3.14. .Oonﬂﬁﬁwm with the last exercise, besides estimation there is also a nice
geometric interpretation for testing. For the model (6.5.26), consider the hypotheses
Hy: 8 =10, versus Hy: 75 6y, (6.3.30)

where 8 is specified. Given a norm || - || on R™, denote by d(X, 7} the distance
between X and the subspace V; Le., d(X, V) = | X — fi||, where ji is defined in
equation (6.3.27). If Hp is true, then % should be close to & = @1 and, hence,
| X ~ 8o1] should be close to d{X, V). Denote the difference by

RD = |[X — 81| ~ X ~ . (6.3.31)

mme values of RD indicate that the null hypothesis is true while large values
indicate Hy. So our rejection rule when using RID is

Reject Hy in favor of Hy, if RD > ¢ (6.3.32)

(a) If the error pdf is the Laplace, (6.1.6), show that expression (6.3.31) is equiv-
alent to the likelihood ratio test, when the norm is given by (6.3.28).

i
(b) If the error pdf is the N(C, 1), show that expression (6.3.31) is equivalent to
MWm EanEpooa ratio test when the norm is given by the square of the I» norm,
6.3.29).

6.3.15. Let X1,Xs,..., X, be a random sample from a distribution with pmf
p{@;6) = 6°(1 ~ 8)*%, 3 = 0,1, where 0 < § < 1. We wish to test Ho: & = 1/3
versus Hy : #3£1/3.

{(a) Find A and ~2log A.

{(b) Determine the Wald-type test.
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where 7 and Z, are iid N{0,1) random variables. Assume moﬁ..s. = 1,2 that, as
n - 60, Na/m — A, Waere 0 < A; < 1and A + Az = 1. As Exercise 6.5.10 shows

1 =
VAl —B) ~ (m ~ p2)] B N Ao_ MWEC —p)+ p(t !Euv : a.o....wmv

Tt follows that the random variable

g PL—Ba) = (ps —p2) (6.5.24)
/\mﬂ C.Imf.._ . uunmwm..uug .

has an approximate N(0,1) distribution. Under Hy, py ~ pz = 0. We could use z
as & test statistic, provided we replace the parameters py(1 — p1} and pa(l l%.&
in its denominator with a consistent estimate. Recall that F; — py, i = 1,2, in
probability. Thus under Hy, the statistic -

7 = b ‘ (6.5.25)
/\m_ 1B ) -+ a{i~Fa)
1 12

has an approximate N(0,1) distribution. Hence, an approximate level o test m
to reject Hp, if |2°| = zas2. Another consistent estimator of the denominator is
discussed in Exercise 6.53.11. m

EXERCISES
6.3.1. In Example 6.5.1 let n = 10, and let the experimental value of the H.mbmwonp
10

veriables yield Z = 0.6 aad 3 _(z: — %)% = 3.6. I the test derived in that example

F . -
is used, do we accept or reject Hy : 61 == 0 at the 5 percent significance level?
* 6.5.2. Let X(,Xo,...,Xn be a random sample from the &mﬁ,oﬁﬁo.u N(8:,65).
" Show that the likelihood ratio principle for testing Ho : 62 = 65 mﬁme..m..&u and;th
unspecified, against Hy : 8z # 85, 81 unspecified, leads to a test that rejects when
T n

MUAHQ. Iw..umMSoH Muﬁas. E.H..umNnuuéwmanAommamm&moﬁmmm@wwowuwmam@.
1 1
¥ 6.3.3. Let X1,...,%n and Y3,..., Y, be independent random samples from the
distributions N(8,,85) and N (02,04}, respectively. ‘
(a) Show that the likelihcod ratio for testing Hp : 81 = By, B3 = 04 against all
alternatives is given by

W?: ~z)*/n
1

.

/2 o T2 )

MH@s, ~y)?/m

1 A

Taim)/ 2

T W?&aﬁ%sﬁ% (m+n)
° 1 1

where u = (nE +m¥)/(n +m).
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(b) Show that the mwmwwooa ratioc test for testing Hy : 83 = 84, 8, and &, unspec-
ified, against Hy : 6y # 84, 01 and 6, unspecified, can be based on the random
variable N

D X-X (-1

F=-

ks

S % =T m 1)
1

6.5.4. Let X1, Xs,..., X, and ¥1, 13, ..., ¥;, be independent random samples from
the two normel distributions N(0, 1) and N(0,82).

() Find the likelihood ratio A for testing the composite hypothesis Hy : 61 = 64
against the composite alternative Hi : §y # fs.

{(b) This A is a function of what F.statistic that would actually be used in this
test?

6.5.5. Let X and ¥ be two independent random variables with respective pdfs
L g-w/e .
Fla;0) = m&vm gz <o, 0<d; <o
0 elsewhere,

for i = 1,2, To test Hy : 81 = b against H: : 8 # 62, two independent sarnples
of sizes my and na, respectively, were taken from these distributions. Find the
Likelihood ratio A and show that A can be written as a function of a statistic having
an F-distribution, under Hp.

6.5.6. Consider the two uniform distributions with respective pdfs

Lllm.AaAQ_looAm,Aoo
..” um.e. s .5 ._.
Flas ) A 0 elsewhere,

for 4 = 1, 2. The null hypothesis is Hp : §; = 92 while the alternative is Hy : 6 # fa.
Let X <« Xpg<v-- < Xp, and ¥; < ¥5 < «-- < ¥;,, be the order statistics of two
independent random samples from the respective distributions. Using the likelitood
ratio A, find the statistic used to test Hy agaivst Hy. Find the distribution of
—2log A when Hy is true. Note that in this nonregular case the number of degrees
of freedom is two times the difference of the dimension of O and w.

6.5.7. Let (X1, ¥7), (X2, ¥2),..., (Xr, ¥o) be a random sample from a bivariate
normal distribution with g1, t2,0f = 03 = 02, p = 3, where py, iz, and o2 > 0 are
unknown real numbers. Find the likelthood ratio A for testing Hy : uy = o = 0, o®
ucknown against-all alternatives. The likelihood ratio A is a function of what
statistic that has a well-known distribution?

6.5.8. Let n independent trials of an experiment be such that =1, o, ...,z are the
respective numbers of times that the experiment ends in the mutually exclusive and
exhaustive events C1, (s, ..., Cr. If p; = P(C}) is constant throughout the n trials,
then the probability of that particular sequence of trials is L = p®*pl2 .. - pER.
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(a) Recalling that py +ps+---+pg = L, show that the likelinood ratio for testing
Hyipi=pp >0 i=1,2,...,k against all alternatives is given by

=11(85)

=1

(b) Show that

& 2
;{2 — npos)
—2log A =
BA=
where 7} is between py; and ©;/n.
Hini:  Expard logpiy in 2 Taylor’s series with the HmBmemH. in the term

involving (pw — 2:/n)" ,
(¢) For large n, argue that o:/(np})? is approximated by 1/(npso) and hence

_ 2
~2log A = MU (23 = npos)” , when Hp is true.
=1 PO

Theorem 6.5.1 says that the right-hand member of this last equation defines
a statistic that has an approximate chi-square distribution with k —1 degrees
of freedorn. Note that

" dimension of Q ~ dimension of w=(k—1) - 0=k~ L. |

6.5.9. Finish the derivation of the LRT found in Example 6.5.3. Simplify as rauch
as possible.

\

6.5.10. Show that expression (6.5.23) of Example 6.5.3 is true.

6.5.11. As discussed in Example 6.5.3, Z, (6.5.25), can be used as 2 test m\mm.mmﬁo
provided we have a consistent estimator of p1{1—p) and p2(1—pz) when Hp Is true.
In the example, we discussed an estimator which is consistent under both Hy and
Hy. Under Hy, though, p1(1—p1) = pa(l~pe) = p(1—p), where p = p; = pz. Show
that the statistic (6.5.22) isa ooumrﬂ“@un estimator of p, under Hp. Thus @mﬂmﬁpﬁm
another test of Hy.

*% 6.5.12. A machine shop that manufactures toggle levers has both a a@% mb& a
night shift. A toggle lever is defective.if a standard nut ¢annot be screwed onto the
dEmmﬁm Let p1 and ps be the proportion of defective levers among those manufac-
tured by the day and night shifts, respectively. We shall test the nall hypothesis,
Hy : p1 = pe, against a two-sided alternative hypothesis based on two random sam-
ples, each of 1000 levers taken from the production of the respective shifts. Use the
test statistic Z* given in Example 6.5.3.

(a) Sketch 2 standard normal pdf iliustrating the eritical region having o = 0.05.
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(b) If y1 = 37 and y» = 53 defectives were observed for the day and might shifts,
respectively, calculate the value of the test statistic and the approximate p-
value (note that this is a two-sided test). Locate the caleulated test statistic
on your figure in Part {2} and state your conclusion. Obtain the approxdmate
pevalue of the test.

6.5.13. For the situation given in Part (b) of Exercise 6.5.12, calculate the tests
defined in Exercises 6.5.9 and 6.5.11. Obtair the mvvwoﬁBm&m p-values of all three
tests. Discuss the results.

6.6 The EM Algorithm

In practice, we are often in the situation where part of the data is missing. For
example, we may be cbserving lifetimes of mechanical parts which have been put
on test and some of these parts are still functioning when the statistical analysis is
carried out. In this section, we introduce the EM Algorithm which frequently can be
used in these situations to obtain maximum Iikelihood estimates. Qur presentation
is brief. For further information, the interested reader can consult the Literature in
this area including the monograph by McLachlan and Krishnan (1897). Altkough,
for convenience, we will write in terms of continuous random varisbles; the theory
in this section holds for the discrete case as well.

Suppose we consider & sample of n items, where n; of the items are observed
while ny = n — n; items are not observable. Denote the observed items by X/ =
(X1, Xz2,..., X0, ) and the unobserved items by Z' = (21, Za,..., Zn,). Assume
that the X;s are iid with pdf f(z|d), where 6 € 2. Assume that Z;s and the X;s are
mutually independert. The conditicnal notation will prove useful here. Let g(x|6)
denote the joint pdf of X. Let A(x,z|9) denote the joint pdf of the chserved and
the unobserved items. Let k(z[f,x) denote the conditional pdf of the missing data
given the observed data. By the definition of a conditional pdf, we have the identity

hix,2(0)

Rlalf ) = =08y

(6.6.1)

The observed likelihood function is L{f]x) = g(x|6). The complete likelihood
function is defined by

L%, %) = h{x,zd). (6.6.2)

Our goal is maximize the likelihood function L(6|x) by using the complete likelihood
L8|, %) in this process.

Using (6.6.1), we derive the following basic identity for an arbitrary but fixed
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discussior. Replacing w; by ~ in expression {6.6.19), the M step of the algorithm.
15 to maximize

fa
Q(8l80,%) = D _[(1 ~ %} log 2 (w:} + % log falz:)]- (6.6.21)
i=1
This maximization is easy to obtain by taking partial derivatives of Q(8]8q,x) with
respect to the parameters. For example,

mm 300 =) (—1/202) (=)o — i)

=1

Setting this to 0 and solving for w1 yields the estimate of p1. The estimates of the
other mean and the variances can be obtained similarly. These estimates are:

.

PO D ¢ Sder)
i HH”_. AH_. ..1 J\.& _
sz o el )(m = )
P iy (1~ 95) _
mm — MM...H.» Vi
T %
e Sy Yl — fia)®
Oy = 7 H
g, ¥

(6.6.22)
Since ~y; is an estimate of P[W; = 1|6, x], the average n~1 J 7. v is an estimate

of m = P{W; = 1]. This average is our estimate of 7. .

EXERCISES
6.6.1. Rao (page 368, 1973) considers a problem in the estimation of linkages in

genetics, McLachlan and Krishnan (1997} also discuss this problem and we present”

their model. For our purposes it can be described as a multinomial model with n?w
four categories Oy, Oy, Cs and Cy. For a sample of size n, let X = (X, Xp, X3, X4)

denote the observed frequencies of the four categeries. Hence, n = M&H X;. The
probability model is . .
¢ | G Gy | Cu
1 1 s
t+30 330 530 3f

where the parameter @ satisfies 0 £ § £ 1. In this exercise, we obtain the mle of 4.
(a) Show that likelihood function is given by

L(6]x) = ——T% T + E& T - .i e T& = (6.6.23)

Ty lwalzalzg! |2 4 4 4

&
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{b) Show that the log of the likelihood function can be expressed as a constant
(not involving parameters) plus the term

L Homﬁ.w + 0] + w2 + 23] log[L -~ 8] + 4 log 8.

(¢) Obtain the partial of the last expression, set the result to 0, and solve for the
mle. (This will result in a quadratic equation which has one positive 2nd one
negative root.)

6.6.2. In this exercise, we set up an EM Algorithm to determine the mle for the
situation described in Exercise 6.6.1. Split category 'y into the two subcategories
Cu and Cyp with probabilities 1/2 and 6/4, respéctively. Let Zy; and Z12 denote

the respective “Frequencies,” Then Xy = 1 + Z1o. Of course, we cannot observe
Z11 and Zhp. Let Z = (Z1y, Zia)'.

(a) Obtain the complete likelihood ‘Le(8]x, z).

(b) Using the last result and (6.6.23), show that the conditional pmf &(zl9,x) is
binomial with parameters z; and probability of success 6/(2 + #).

{c) Obtain the E step of the BEM Algorithm given an initial estimate 89 of 4.
That is, obtain :

QT x) = Ejy flog LE(lx, Z)[F®, x].

Recall that this expectation is taken using the conditional pmf k(z|8(©), x).
Keep in mind the next step; i.e., we need only terms that involve 4.

(d) For the M step of the EM Algorithm, solve the equation 8Q(8]8(®, x) /86 == (.
Show that the solution is

WAHV - HH\QMBU 4~ MH& = uanAS
1) +2(zg + 35 + 24)

(6.6.24)

6.6.3. For the setup of Exercise 6.6.2, show that the following estimator of 8 is
unbiaged.

§=n"1(Xy ~ X2 — X3 + X0 (6.6.25)

6.6.4. Rao (page 368, 1973) presents data for the situation described in Exercise
6.6.1. The observed frequencies are: x = (128, 18, 20,34)'.

(2) Using computational packages, (eg, R or S-PLUS), with (6.6.25) as the initial
estimate, write a program that obtains the stepwise EM estimates 605,

(b} Using the data from Rao, compute the EM estimate of § with your program.

List the sequence of EM estimates, Q.ﬁ: that you obtained. Did your sequence
of estimates converge?
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(¢) Show that the mle using the likelihood approach in Exercise 6.6.1 is the pos-
itive root of the equation: 1978° — 150 — 68 = 0. Compare it with your EM
solution. They ghould be the same within roundoff error.

6.6.5. Suppose X1, Xe, ..., X, are a random sample from a IV (0, 1} distribution.
Suppose Z1,Z2,...,%n, are missing observations. Show that the first step EM
estimate is

WAS _ 3Hmm+3,w®rmou

n )

where 79 is an initial estimate of 8 and n = ny, -~ ne. Note that if o = =T, then
8% =7 for all k.

6.6.6. Consider the sitvation described in m;uS.B@Hm 6.6.1. But suppose we have left
censoring. That is, if £, Zs, ..., Zn, are the censored items then all we know is
that each Z; < a. Obtain the EM Algorithm estimate of 6.

6.6.7. Suppose the following data follow the model of Example 6.6.1.

201 074 063 150t 147 130t 1.307 152
0.07 -0.04 -0.21 005 -0090 067 0.14

where the superscript T denotes that the observation was censored at 1.50. Write
a computer program to obtain the EM Algorithm estimate of 8.

6.6.8. The following data are observations of the random variable X = (1-W)¥; +
WYs, where W has a Bernoulli distribution with probability of success 0.70; ¥
has 2 N(100,207) distribution; ¥z has a N(120,25%) distribution; W and ¥} are
independent; and W and Y3 are independent.

119.0 96.0 1462 1386 1434 982 1243
1141 1362 1364 1848 798 1519 1142
1457 959 973 1364 1092 1038.2

Program the M Algorithm for this mixing broblem as discussed at the end of the
section. Use a dotplot to obtain initial estimates of the parameters. Compute dvm
estimates. How close are they to the true parameters?

.

Chapter 7

Sufficiency

7.1 Measures of Quality of Estimators

In Chapter 6 we presented procedures for finding point estimates, interval estimates,
and tests of statistical hypotheses based on likelihood theory. In this and the next
chapter, we present some optimal point estimates and tests for certain situstions.
We first consider point estimation.

In this chapter, as in Chapter 6, we fnd it convenient to use the letter f to

. denote a pmf as well as a pdf. It will be clear from the context whether we are

discussing the distributions of diserete or continuous random variables.
Suppose f(z;0) for § € Q is the pdf (pmf) of a continuous (discrete) random
varizble X. Consider a point estimator ¥, = u(Xi,...,X,) based on a sample

A1y, Xq. In Chapter 4, we discussed several properties of point estimators.

Recall that ¥, Is a consistent estimator (Definition 4.2.2} of § if ¥;, converges to
¢ In probability; ie., ¥, is close to § for large sample sizes. This is definitely a
desirable property of a point estimator. Under suitable conditions, Theorem 6.1.3
shows that the maxiroum likelihood estimator is consistent. Another property was
unbiasedness, (Definition 4.1.1), which says that ¥;, is an unbiased estimator of §
i B(Y,) = 6. Recall that maximum likelihood estimators may not be unbiased;
although, generally they are asymptotically unbiased, (see Theorem 6.2.2).

If two estimators of € are unblased, it would seem that we would choose the
one with the smaller variance. This would be especially true if they were both
approximately normal because by (5.4.3) the one with the smaller variance would
tend to produce shorter asymptotic confidence intervals for 8. This leads to the
following definition:

Definition 7.1.1. For a given positive integer n, ¥ = u(X1, Xa,..., Xn) will be
called o minimum variance unbiased estimator, (MVUE), of the parameter 6,
Y is unbiased, thet 45, B{(Y) = 4, and if the variance of Y is less than or equal
to the varionce of every other unbiased estimator of 6.

Example 7.1.1. As an illustration, let Xy, X, ..., X denote 2 random sample
from a distribution that is N(6,5?%), where —o00 < 6 < 0. Because the statistic

i
f
|
|
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There are two additional cbservations about decision rules and loss functions
that should be made at this point. First, since ¥ is a statistic, the decision rule
(Y} is also a statistic, and we could have started directly with a decision rule based
on the observations in a random sample, say §1(X1, Xea,...,Xn). The risk function
is then given by

.wwmmum“_.u = .@ﬁhﬁm»mpﬁhﬂfuuﬁ:uﬁ .
= .\.l \.', L8, 8121, o, 3n) | F (@1 8) - o [(n; 0) dy - diin

if the random sample arises from a continuous-type distribution. We did not do this
because, as you will see in this chapter, it is rather easy to find & good statistic, say
Y, upon which to base all of the statistical inferences associated with a particular
model. Thus we thought it more appropriate to start with a statistic that would
be familiar, like the mle Y =X in mvEBwH .1.2. The second decision rule of that
example could be written §2(X7, Xa,...,Xn) = 0, a constant no matter what values
of Xy, Xa, ..., X, are observed.

“The second observation is that we have only used one loss function, namely
the squared-error loss function L£(8,8) = (8 — §)%. The absolute-error loss function
L£(8,8) = |@ - 8| is another popular one. The loss function defined by

£6,8) = 0, |8-8<a, \
= b #-b>a

where @ and b are positive constants, is sometimes referred to as the goal post ioss
function. The reason for this terminology is that football fans recognize that it
is similar to kicking a field goal: There is no loss (actually a three-point gain) if
within @ units of the riddle but b units of loss {zero points awarded) if outside that
restriction. In addition, loss functions can be asymmetric as well as symmetric as
the three previous ones have been. That is, for example, it might be more costly to
underestimate the value of & than to overestimate it. (Many of us thiuk about this
type of loss function when estimating the time it takes us to reach an alrport to
catch a plane.) Some of these loss functions are considered when studying Bayesian
estimates in Chapter 11. _

Let us close this section with an interesting illustration that raises a question
leading to the likelihood principle which many statisticians believe is a quality
characteristic that estimators should enjoy. Suppose that two statisticians, A and
B, observe 10 independent trials of a random experiment ending in success or failure.
Let the probability of success on each trial be 8, where 0 < § < 1. Let us say wwma
each statistician observes one success in these 10 trials. Suppose however, dwmﬂ A
had decided to take n = 10 such observations in advance and found only one-sugcess
while B had decided to take as many observations as needed to get the first success,
which happened an the 10th trial. The model of A is that ¥ is b(r = 10, 8) and
y =1 is observed. On the other hand, B is considering the random variable Z that
has a geometric pdf g(z) = (1~ §)* 718, 2 =1,2,3,..., and z = 10 is observed. In
either case, the relative frequency of success is

¥
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which could be used as an estimate of 6.

Let us observe, however, that one of the ooﬁmmﬁonaﬁa estimators, ¥/n and 1/2,
is biased. We wm.ém v
H
E hwmv = HQ.GQV = ﬂu.ﬁ.omu =4
while

mmwv - Wm.ﬁngim
z) Lz
= O+ 3100+ 51 =64 >0,

,H,wm.ﬂ is, 1/Z is a biased estimator while Y/10 is unbiased. Thus A is using an
unbiased estimator while B is not. Should we adjust B’s estimator so that it, too,
is unbiased?

It is interesting to note that if we macdmize the two respective likelihood func-
tions, namely

L,(0) = @v 9v(1 - )10
and <
Lo(8) = (1 - )78,

with n = 10, y = 1, and z = 10, we get exactly the seme answer, § = o This
must be the case, becanse in each situation we are maximizing (1 — 8)%¢. Many
statisticians believe that this is the way it shouid be and accordingly adept the
likelihood principle:

Suppose two different sets of data from possibly two different random experiments
lead to respective likelthood ratios, L1(6) and Lo(8), that are propertionel to each
other. These two dota sets provide the same information about the paramneter & and
a statistician should obtain the some estimate of 8 from either.

In our special llustration, we note that Lq(8) o< Ly (f), and the E,nmgoom, prin-
ciple states that statisticions A and B should make the same inference. Thus

believers in the likelihood principle would not adjust the second estimator to make
it unbiased.

EXERCISES

k)
7.1.1. Show that the mean X of a random sample of size n from a distribution

having pdf F(z;8) = (1/8)e~/f, 0 < z < o0, 0 < 6 < o0, zero elsewhere, is 2n
unbiased estimator of 6 and has variance 42 /n.

T7.1.2. Let X1, Xo,..., X, denote a random mmB@Hm from & normal %mﬁﬁ,osﬂob with
mean zero and variance 8, 0 < # < co. Show that M,x. # /n is an unbiased mmﬁBwﬁoH

T
of ¢ and hes variance 262 /n.
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7.1.3. Let ¥} < Yz < Y3 be the order statistics of a random sample of size 3 from
+he uniform distribution having pdf fla;8) = 1/8, 0 <z <o, (<P < 00, Zero
clsewhere. Show that 473, 2¥5, and WJ\m are all unbiased estimators of 4. Find the
variance of each of these unbiased estimators.

7.1.4. Let ¥; and Y2 be two independent unbiased estimators of 9. Assume that
the variance of ¥ is twice the variance of Ya. Find the constants k; and k2 so
that B ¥; + k2 ¥5 is an unbiased estimator with smallest possible variance for such
a linear combination.

7.1.5. Tn Example 7.1.2 of this section, take £[8,6(y)] = |§ — m@i. Show that
R(8,6,) = £/2/7 and R(9,82) = |9]. Of these two decision functions §; and &,
which yields the smaller maxdimum. risk?

7.1.6. Let Xy, Xo,..., X, denote a EﬁMoE sample from a Poisson &mﬁ&ddﬁobﬁ
with parameter 8, 0 <0 < co. Let ¥ = > X and let L[, 6(z)] = [ ~ S()]*. T we

1
restrict our considerations to decision functions of the form J(y) = @ +y/n, w&m_..m
b does not depend on y, show that R(8,8) = & + 8/n. dﬁpm&. n.memHob m.sboﬁoﬂ ﬂ.um
this form yields a woiformly smaller risk than every other-decision mcuﬁ.mo.b of .nEm
form? With this solution, say §, and 0 < £ < co, determine Ew.un‘mﬁmv& i it mﬁm&mw

7.1.%. Let X1, Xs,...,Xn denote a random sample from a distribution that is
N{i2,6), 0 < 6 < oo, where j is unkuown. Let ¥ =y (X; - X)*/n =V and let

: T
g, d(y)] = [0—8(3)]2. T we consider decision funetions of the form §(y) = by, where
%Fomwn ,A%wﬂ @%ﬁmﬁ%&Woﬂ v, show that R(8,8) = (82/n%)[(n? —1)p* —2n(n- 1)b-+n?].
Show that b = n/{n-+1) yields a minimum risk decision functions of this form. Note
that n¥/(n + 1) is not an unbiased estimator of §. With §(y} = ny/(n + 1) and
0 < @ < oo, determine E%.Awnm»& if it exists.

7.1.8. Let X1, Xs,..., X, denote 2 random sample from a distribution that is
n
b(1,8), 0 < 8 <1 Let ¥ = > X; and let £[8,6()] = [6 — 6())°. Consider

1

decision functions of the form 8(y) = by, where b does not depend upon y. Prov

that R(8, ) = b*né(1 — ) + (bn — 1)*6%. Show that -
btn?

[B2n — (bn — —1)%] )

provided that the value b is such that b®n = 2(bn — 1)°. Prove that b= 1/n does

not maximize Bw..ﬁmmm, 8. . ,

Bwuﬂmﬁmu,& =

7.1.9. Let X7, Xo,..., X, be a random sample from a Poisson distribution with
mean & > 0.

(a) Statistician A observes the sample to be the values T, %2,..., 2, With sum
y =3 z; Find the mle of &.

7.2. A Sufficient Statistic for a Parameter 373

(b) Statistician B loses the sample values 1,2, ...,2, but remembers the sum
y1 and the fact that the sample arose from a Poisson distribution. Thus
B decides to create some fake observations which he calls 21, 2s,...,2, (as
he knows they will probably not equal the original z-values) as follows. He
notes that the conditional probability of independent Poisson random vari-
ables 73, Z, ..., Z- being equal to 21, 22,..., 2n, given 3.2 = 11 is

§%Lamd gra.—¢ . F i

i e Znl - @_HH ., .u:.. . W.._ uu... W -
(n&)¥ien? zilzal-ozpl \n/ An n

w2l

since ¥: = 3 Z; has a Poisson distribution with mean n. The latter distri-
bution is multinomial with y independent trials, each terminaticg in one of n
mutually exclusive and exhaustive ways, eack of which has the same probabil-
ity 1/n. Accordingly, B runs such a multinomial experiment y; independent
trials and obtains 21, 22,...,%.. Find the likellhood function using these z-
values. Is it proportional to that of statistician A7

Hint: Here the likelibood function is the product of this conditional pdf and
the pdfof ¥1 =% Z,.

"

7.2 A Sufficient Statistic for a Parameter

Suppose that Xy, X»,..., X, is a random sample from a distribution that has pdf
Fla;8), @ € Q. In Chapters 4 and 6 we constructed statistics o make statistical
inferences as illustrated by point and interval estimation and tests of statistical
hypotheses. We note that a statistic, for example, ¥ = u{X{, Xa,..., X,,), is a form
of data reduction. To illustrate, instead of listing all of the individual observations
X1, Xz,..., Xy, we might prefer to give only the sample mean X or thé sample
variance S, Thus statisticians Jook for ways of reducing a set of data so that these
data can be more easily understood without lesing the meaning associated with the
entire set of observations. :

It is interesting to note that a statistic ¥ = u{Xy, Xa,..., X,) really partitions
the sample space of X1, Xs, ..., X,. For illustration, suppose we say that the sample
was abserved and T = 8.32, There are many points in the sample space which
have that Same mean of 8.32, and we can consider them as belonging to the set
{{(&1,22,...,2.) : T = 8.32}. As a matter of fact, all points on the hyperplane

Tt ot b, = (3320

yield the mean of Z = 8.32, so this hyperplane is the set. However, there are many
values that X can take and thus there are many such sets. So, in this sense, the
sample mean X, or any statistic ¥ = w(Xy, Xa, ..., X}, partitions the sample
space into a collection of sets. .

Often in the study of statistics the parameter § of the model is unknown; thus
we need to make some statistical inference about it. In this section we consider a
statistic denoted by Y1 = (X1, Xy, ..., X,), which we call a sufficient stotistic
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because

wM;U?. ~E)E—8) =2F -0 (z—F) =0

FEE5 i=1

Thus the joint pdf of X7, X3, ..., X, may be written

mq,w.mva@é :MJH?. — 8)2/2

. exp l/MJ\@a. ~z) 257
= {exp[~n(Z ~ 6)*/26°]} %ﬁw»\wm E

Because the first factor of the right-hand member of this equation. depends upon
T1,%2,...,%n only through %, and the second factor does not depend upon 8, the
factorization theorem imaplies that the mean X of the sample is, for any particular
value of o7, a sufficient statistic for §, the mean of the normal distribution. m

We could have used the definition in the preceding example because we know
that X is N(8,0%/n). Let us now consider an example in which the use of the
definition is inappropriate.

Example 7.2.5. Let X1, Xs,..., X, denote a random sample from a distribution

with pdf
: gy | 827 0<z<l y
Fla:6) = ] elsewhere,

where 0 < 4. Using the factorization theorem, we will show that the product
w(X1, X2y, Xn) = [[5. X Is & sufficient statistic for . The joint pdi‘of
X1, Xy ooy X 3 .

wl

7 ¢ n g 1
H\Hﬂm = | G MHe AIIIHKH Hsv ,

ge=1

where 0 < o; <1, £ =1,2,...,7n. In the factorization theorem let .

™ 2 i
frlun (22,28, 2n); 0] = 07 | [ ]2 .
i=1 .u..,
w..b.&. B
1
womﬁafamu -- u&s.u = %.

Since ka{w1, a? -, Tn) does noa depend upon §, the product [Ti., X is a sufficient
statistic for 0. m
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There is a tendency for some readers to apply incorrectly the factorization theo-
rem in those instances in which the domain of positive probability density depends
upon the parameter §. This is due to the fact thet they do not give proper consid-
eration to the domain of the function ks(zy, 22, ..., Zn). This will be illustrated in
the next example.

Example 7.2.6. In Example 7.2.3 with f (2:6) = e =D g o) (@), it Was found
that the first order statistic ¥: is a sufficient statistic for 8. To illustrate our point
about not considering the domain of the function, take n = 3 and note that

e={z1=8) p={z2~) = (za—0) - mmlu neax aﬁ.._.wj ?iﬁ{ienleu.vw wmaxzi]

or a similar expression. Certainly, in the latter formula, there is no @ in the second
factor and it might be assumed that ¥z = max X; is a sufficient statistic for 8. Of
course, this is incorrect because we should have written the joint pdf of Xy, Xy, X3
as

3 3

TTle® 2 Iip 0y (@] = [ Tp,00) (min )] [&xp { = > 22

. . g2,
because Ig ooy (0in 2:) = I(g,00) (21)1(8,00) (2) 16,00y (¥3)- A similar statement car-
not be made with maxz;. Thus ¥; = min X; is the sufficient statistic for 8, not
Yz =maxX;. u

EXERCISES

- kil
7.2.1. Let X1, X3,...,Xn be iid N(0,8), 0 < § < co. Show that 9 X7 is a
1
sufficient statistic for 6.
7.2.2. Prove that the sum of the observations of a random sample of size n from a
Poisson distribution having parareter 8, 0 < 8 < oo, is a sufficient statistic for 8.

7.2.3. Show that the nth order statistic of a random sample of size n from the
uniform distribution having pdf f{z;8) = 1/8, 0 < =z < 8, 0 < ¢ < co, zero
elsewhere, is a sufficient statistic for #. Generalize this result by considering the pdf
Flz;0) = Q)M (z), 0 <z <8, 0 <8< oo, zero elsewhere. Here, of course,

1
.g
.\ T Q)
7.2.4. Let X1,X2,...,X, be a random sample of size n from a geometrie distri-

bution that Fm..a pmf .i.s. B)={1-8)%¢, z=0,1,2,..., 0 € 8 < 1, zero elsewhere.
Show that M.N.ﬁ. is a sufficient statistic for &.

1
7.2.5. Show that the sum of the observations of 2 random sample of size n from

a gamma distribution that has pdf f(z;8) = (1/8)e~*%, 0 <z < 00, 0 < § < o0,
zero elsewhere, is a sufficient statistic for 4.
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% 7.2.6. Let X3, X»,...,X, be a random sample of size n from a beta distribution
with parameters & = § and # = 2. Show thab the product X1 Xz - - - X, is 2 sufficient
statistic for 0.

¥ 7.2.7. Show that the product of the sample observations is a sufficient statistic for
@ > 0 if the random sample is taken from a gamme distribution with parameters
a =6 and 3 =86. .

¥ 7.2.8. What is the sufficient statistic for 8 if the sample arises from a beta distri-
bution in whicha =8 =6 > 07

% 7.2.9. We consider a random sample X1, Xs, ..., X, from a distribution .ﬁiﬁ.@&.
Fla;6) = (1/0) exp(—x/8), 0 < T < 00, zero elsewhere, where 0 < . Possibly, in 2
life testing situation, however, we only observe the first r order statistics Yi<Ye<
e & M\m.. 13

{2) Record the joint pdf of these order statistics and denote it by L(6).
(b) Under these conditions, find the mle, &, by maximizing L(6).
(c) Find the mgf and pdf of 4.

{d) With a slight extension of the definition of sufficiency, is 8 a sufficient statistic?

7.3 Properties of a Sufficient Statistic ,

Suppose X1, Xa, ..., Xn is a Tandom sample on a random variable with pdf or w.Bm
F(z;6) where ¢ € Q. In this section we discuss how sufficiency Is used to @mdmnﬂpmo
MVUEs. First note that a sufficient estimate is not unique in any sense. For if
Y: = ui(X1,X2,...,Xn) is a sufficient stasistic and ¥2 = g(¥3) where g(z) is a
one-to-one function is a statistic then

F(@8) f(22:0) -+ Flan;0) = Fulualyn)iOike(z1, 2. 2n)
by fun (7 (2)); €Kz (@1, B2y - -+, )

i

|

below shows, sufficiency can lead to a best point estimate. .
We first refer back to Theorem 2.3.1 of Section 2.3: If X3 and X» are Buaomb
variables such that the variance of Xz exists, then ) )

hence, by the factorization theorem Yz is also sufficient. However, as the ?moﬁ.a.c

EX] = BIE(X,|X1)] !
and

vaz(Xz) 2 var{E(Xa|X1)]-
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For the adaptation in context of sufficient statistics, we let the sufficient statistic
¥1 be Xy and ¥z, an unbiased statistic of 6, be Xs. Thus, with B{Yz|1) = ©(n),
we have

0 = E(¥z) = Elp() -
and .

var(¥z) 2 varlp(¥1)].

That is, through this conditioning, the function ¢(¥]) of the sufficient statistic ¥;
is an unbiased estimator of # having a smaller variance than that of the unbiased
estimator ¥3. We summarize this discussion more formally in the following theorem,
which can be attributed to Rao and Blackwell.

Theorem 7.3.1 (Rao-Blackwell), Let X;,Xa,..., X, n a fized positive integer,
denote a random sample from ¢ distribution (continuous or discrete) that has pdf or
pf Flz:0), 9 e Q. Lt ¥y = u (X1, Xo, ..., X)) be a sufficient statistic for 8, and
let Yy = ua(X1,X2,...,X,,), not a function of ¥z alone, be an unbiased estimator
of 8. Then E(Yaly1) = wli) defines a statistic (Y1), This statistic (Y1) is a
Ffunction of the sufficient statistic for 8; it is an unbicsed estimator of 8; and tbs
varience is less than thet of ¥s. .

This theorem tells us that in our search for an MVUE of a parameter, we may,
if a sufficient statistic for the parameter exdsts, restrict that search to functions of
the sufficient statistic. For if we begin with an unbiased estimator ¥ alone, then
we can always improve on this by computing B(¥aly:) = (1) so that (¥1) is an
unbiased estimator with smaller variance than that of ¥a. :

After Theorem 7.3.1 many students believe that it is necessary to find first some
unbizsed estimator ¥z in their search for {¥1), an unbiased estimator of @ based
upon the sufficient statistic ¥;. This is not the case at-2ll, and Theorem 7.3.1
simply convinces us that we can restrict our search for a best estimator to functions
of ¥3. Furthermore, there is a connection between sufficient statistics and rmaximum
likelihood estimates ag the following theorem shows,

Theorem 7.3.2. Let X1, Xs,...,X, denote a random sample from o distribution
that has pdf or pmf f(2;6), 6 € Q. If a sufficient statistic Y1 = u (X1, Xs,...,X,)
for 8 exists and if o mazimum likelihood estimator 8 of 8 also ezists unigquely, then
G is o function of Y1 = w (X7, X5, .., X4).

Proof. Let %S {713 9) be the pdf or pmf of ¥3. Then by the definition of sufficiency,
the likelihood function

L{6;31,T, .., 0) = fl2130)f(2036) - Flan; )
m...u\ym\gu.mﬁwuﬂwu e .muﬂﬁvmmwmﬁ.ﬁuﬁq&mu e uﬂﬂ‘vu

where H(z),%s,...,%,) does not depend upon 8. Thus L and fv, as functions
of 8, are maximized simultaneously. Since there is one and only one value of 6




zero elsewhere. Thus

Y
m?,. &

i
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Y1~ Ya Y
z m ) +5(3 sv
1 © 71\? 2 = {y~vy3)/@ vz
ﬁwu \s Amu (y1 —ya)e dy1+ 3

l E&%MIHE; i
= 6 ot =31

1

Of course, BT (¥z)] = 8 and var[Y{¥3)] < var(¥1/3), but T(¥3) is not a statistic as
it involves & and cannot be used as an estimator of §. This illustrates the preceding
remark. W

EXERCISES

% 7.3.1. In each of the Exerciges 7.2.1, 7.2.2, 7.2.3, and 7.2.4, show that the mle of 8
is a function of the sufficient statistic for 4.

¥ 7.8.2. Let Y] < Y2 < ¥3 < Y3 < V5 be the order statistics of a random sample of size

5 from the uniform distribution kaving pdf flz;0) = 1/8, 0 <z <8, 0 <8 < 0,

zero elsewhere. Show that 2¥3 is an unbiased estimator of 8. Determine the joint
pdf of ¥3 and the sufficient statistic ¥5 for 6. Find the conditional expectation

E(2Yalys) = ¢(ys). Compare the variances of 213 and ¢(¥5).

% 7.3.3. ¥ X1,X> is a random sample of size 2 from a distribution having pdf
Flz9) = (2/8)e™=/%, 0 < 2z < co, 0 < 8 < 0o, zexo elsewhere, find the joint
pdf of the sufficient statistic ¥1 = X1 + X; for § and ¥z = Xo. Show that Y3 is an
unbiased estimator of @ witk variance 2. Find E(¥aly) = (1) and the variance

of (7).

¥ 7.3.4. Let Flz,y) = (2/6%)e=E+)/? 0 < z < y < o0, zero elsewhere, be the joint

pdf of the random variables X and Y.

.

(b) Show that B (Y|z) = z+8. In accordence with the theory, the expected 5&5
of X + 4 is that of Y, namely, 36/2, and the variance of X -+ 0 is less ﬁpm,.p

thet of Y. Show that the variance of X + ¢ is in fact 82/4.

¥ %.3.5. In eack of Exercises 7.2.1, 7.2.2, and 7.2.3, compute the expected valug of
the given sufficient statistic and, in each case, determine an unbiased mmdﬁomaoﬂ of

& that is a function of that sufficient statistic alone.

4 7.3.6. Let X1, Xo,..., X, be a random sample from a Poisson distribwticn with
ke

mean ¢. Find the conditional expectation B { X1 + 2X5 + 343 MUMD, .
1

(a) Show that the mean and the variamce of Y are, respectively, 30/2 and 567 /4.
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7.4 Completeness and Uniqueness

Let ,.Nr Xz,..., X, be arandom sample from the Polsson distribution that has pmf
Bnlm
g xem&nﬁ el 2=0,1,2...; 0<4

0 elsewhere.

™
From Exercise 7.2.2, we know that ¥ = Mub. is a sufficient statistic for ¢ and its
. , Py
pmf is ’
ST )
w...l.wllmlll. n ”OqHuMu..

mm = (2
92336 0 ’ elsewhere.

Let us consider the faimily {g1{y1;8) : 0 < 8} of probability mass functions. Suppose
that the function w(Y¥7) of ¥7 Is such that Blu(¥1)] = 0 for every > 0. We shall
show that this requires u{y;) to be zero at every point 71 = 0,1,2,.... That is,
Eu(¥1)] =0 for 0 < 8 requires

0=u(0)=u(l)=u@)=u@)=---.
‘We have for all 8 > 0 that .
0= B = 3w B

=0

= e [uo +u B ru B 4

Since e~ does not equal zero, we have shown that

0 5= w(0) + [ Cai ,.wﬁ UT,

However, if such an infinite (power) series converges to zero for ali 8 > 0, then each
of the coefficients must equal zero. That is,

n2yu(2)
2

and thus 0 = »(0) = u(l) = u(2) = -.-, as we wanted to show. Of course, the
condition Flu(¥7)] = 0 for all § > 0 does not place any restriction on w(y:1) when gy
is not a nonnegative infeger. So we see that, in this lustration, Efu(¥7)] = 0 for all
& > 0 requires that u{y,) equals zero except on a set of points that has probability
zero for each pmf ¢ (y1;6), 0 < 6. From the following definition we owmmﬁs that
the family {g1{y1; ) : 0 < 8} is complete.

Definition 7.4.1. Let the random varieble Z of either the continuous fype or the
discrete fype have a pdf or pmf that is one member of the family {h(%;8): 8 € Q}. If
the condition E[u(Z)] = 0, for every 8 & £, requires that u(z) be zero excent on a set
of points that has probability zero for each h{z;0), 0 € Q, then the family {h(z;9) :
8 € Q} is called a complete family of probability density or mass functions.

u{0) =0, Sfﬁv =0, =0,...
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-~

Remark T.4.1. In Section 1.8 it was noted that the existence of Eu(X)] implies
that the integral {or sum) converges absolutely. This absolute convergence was
tacitly assumed in our definition of completeness and it is needed o prove that
certain families of probability density functions are complete. M

In order to show that certain families of probability density functions of the
continuous type are complete, we must appeal to the same type of theorem in anal-
vsis that we used when we claimed that the moment generating function uniquely
determines a distribution. This is illustrated in the next example.

Example 7.4.1. Consider the family of pdfs {h{z;0) - 0 <8 < oo}, Suppose Z
bas a pdf in this family given by

<

lem#/¢ Q< z< oo
.y =/ §¢
ﬂuﬂS IA o mwmméﬁmam.

Let us say that E[u(Z)] =0 for every 8 > 0. That is,
H 0
3 .\ w2 dz =0, 8> 0.
o

Readers acquainted with the theory of transformations will recognize the integral
in the left-hand member as being essentially the Laplace transform of u(z).} In
thet theory we learn that the only function u(z) transforming te a function of &
which is identically equal to zero is u(z) = 0, except (in our terminology) on 2
set of points that has probability zero for each A(z; ), 0 < 6. That is, the family
{h(2;6): 0 < 8 < co} is complete. =

Lt the parameter 0 in the pdf or pmf f{z;4), 8 € &, bave a sufficient statis-
tic ¥ = uy (X1, Xo,...,Xn), where Xy, Xa,..., X, is a random sample from this
distribution. Let the pdf or pmf of ¥1 be fv (v1:8), 8 € Q. Tt has been seen that,
if there is any unbiased estimator Y3 (not & function of ¥1 alone) of 4, then there
is at least onme function of ¥; that is an unbiased estimator of 8, and our search
for a best estimator of § may be restricted to functions of ¥1. Suppose it has been
verified that a certain function {¥;), not a function of &, is such that Elp(¥;)] =6
for all values of 8, & € Q. Let %(¥7) be another function of the sufficient statistic
¥, alore, so that we also have B[y (Y1)] = 6 for all value of 4, # € 2. Hence,

+

Ble(¥) -y =0, Q. :

e

Tf the family {fy, (31;8) : 6 € Q} is complete, the function of w(y1) = ¥(y1) =0,
except on. 2 sét of points that has-probability zero, That is, for every other unbiaded
estimator (Y1) of 8, we have g

wln) =1(y) )
except possibly at certain special points. Thus, in this sense mamely @{z1) = ¥{y1),
except on & set of points with probability zere], ¢(¥1) is the unique function of ¥1,
which is an unbizsed estimator of 6. In accordance with the Rao-Blackwell theorem,
(Y1) has a smaller variance than every other unbiased estimator of #. That is, the
stasistic (Y1) is the MVUE of §. This fact is stated in the following theovem of
Lehmann and Scheffé.
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Theorem 7.4.1 (Lehmann and Scheffé). Let X1, Xa,...,Xn, n a fived positive
integer, denote a random semple from a distribution that has pdf or pmf F(z: 0}, 0 &
2, let ¥ = wi (X1, Xoy..., X5) be o sufficient statistic for §, and let the family
{fr; (v1;6) : & € 1} be complete. If there is o function of Yi that is an unbiased
estimator of 8, then this function of ¥1 is the unigue MVUE of 8. Here “unigue”
s used in the sense described in the preceding paragraph.

The statement that Yi is a sufficient statistic for a parameter 8, ¢ & €2, and
that the family {fy, (y1:6) : @ € Q} of probability density functions is complete
is lengthy and somewhat awkward, We shall adopt the less descriptive, but more
convenient, terminology that ¥ is a complete sufficient statistic for 6. In the next
section we study a fairly large class of probability demsity functions for which a
complete sufficient statistic ¥; for 8 can be determined by inspection.

EXERCISES

. ki
¥ T.4.1. X az® + bz + ¢ = 0 for more than two values of zythena =b=c=10. Use

this result to show that the family {5(2,6) : 0 < § < 1} is complete.

¥ 7.4.2. Show that each of the following families is not complete by finding at least

one nonzero function w{z) such that Efu(X)] = 0, for all § > 0.
()

Lo
QAH“SHA% f<z<f® wherel0<8<oo

elsewhere.
(b) N(0,8), where 0 < 8 < co.

% 7.4.3. Let X1, Xo, ..., X, represent a random sample from the discrete distribution

having the pmf
] Fl-l= =01, 0<b<1
3 ;8) = P
f(=6) A 0 elsewhere,
n
Show that ¥y == M,N.ﬂ. is a complete sufficient statistic for 4. Find the unique

1

function of ¥7 that is the MVUE of 4. ’
mﬂ«.ﬁ.. Display E[u(¥1)] = 0, show that the constant term w{0) is equal to zero,
divide both members of the equation by 6 5 0, and repeat the argument.

% 7T.4.4. Consider the family of probability density functions {h{z;8) : 6 € O}, where

h{z;8) = 1/8, 0 < z < 8, zero elsewhere.

{a) mw_oé that the family is complete provided that O = {6 :0 < 8 < co}.
Hint:  For convenience, assume that u(z) is confinuous and mote that the
derivative of E[u{Z)] with respect to 8 is equal to zero also.

(b) Show that this family is not complete if @ = {4 : 1 < 8 < oo}
Hint:  Concentrate on the interval 0 < # < 1 and find a nonzero function
u(z) on that interval such that Blu(Z)] = 0 for all § > 1.
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7.4.5. Show that the first order statistic ¥7 of a random sample of size n from
the distribution having pdf f(z;8) = e~=9, 8 < z < 0o, —o0 < # < 0, zero
elsewhere, is a complete sufficient stasistic for 8. Find the unique function of this
statistic which is the MVUE of 4.

% 7.4.6. Let a random sample of size n be taken from a distribution of the discrete
type with pof f(z;8) =1/8, z=1,2,...,8, zero elsewhere, where 9 is an cbﬁnoé
positive integer.

(a) Show that the largest observation, say ¥, of the sample Is a corplete sufficient
statistic for 4.

{b) Prove that .
Y™ — (¥ = DY — (Y - 1))

is the unique MVUE of . .

¥ 7.4.7. Tet X have the pdf fx(z;6) = 1/(26), for -6 < z < 8, zero elsewhere, where
¢>0.

(2) Is the statistic ¥ = [X| a sufficient statistic for 87 Why?
(b) Let fy(y;8) bethe pdf of Y. Is the family {fy (3;0) : & > 0} complete? Why?
% 7.4.8. Let X have the pmf p(z;8) = L()0I#I(1 — g)»1=!, for & = 1, £2,...,3m,

Z.

2(0,0) = (1L — 8)", and zero elsewhere, where 0 < 8 < 1.
(a) Show that this family {p(z;8) : 0 < & < 1} is not complete.
{b) Let Y = |X|. Show that ¥ is a complete and sufficient statistic for 8.

S

-

% 7.4.9. Let Xq,..., X, be iid with pdf f(z;8) = 1/(38), ~F < = < 20, zero else-
where, where 4 > 0. .

(a) Find the mle Fof.
(b) Is § a sufficient statistic for §7 Why?
(¢) Is (n+ 1)8/n the unique MVUE of §7 Why? .

¥ 7.4.10. Let Y1 < Y5 < --- < ¥, be the order statistics of a random sample of mwmm i
from a distribution with pdf f{z;§) = 1/6, 0 < z < 8, zero elsewhere. The mﬂw_\.a,mﬁo
¥, is a complete sufficient statistic for 8 and it has pdf : <

n—1

§3
Flgn: 6) = @m; , 0<yn <8,

and zero elsewhere.
(a) Find the distribution function H.(2;8) of Z = n(f — ¥5.).
(b) Find the im H,(z;§) and thus the limiting distributicn of Z.

T OO0
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7.5 The Exponential Class of Distributions

In this section we discuss an important class of distributions, called the ezponential
class. As we will show, this class possesses complete and sufficient statistics which
are readily determined from the distribution.

Consider a family {f(x;8) : § € O} of probability density or mass functions,
where () is the interval set = {#: v < § < 6}, where v and § are known constants
(they may be ==o0), and where

e = { edlpB)K () +50) +a(@) o€

0 elsewhere, (7.5.1)

where & Is the support of X, In this section we will be concerned with a particular
class of the family called the regular exponential class,

Definition 7.5.1 (Regular Exponential Class). A pdf of the form (7.5.1) is
said fo be o member of the regular exponential class of probability density or
mass funciions if .
1. &, the support of X, does not depend upon 6,

2. p(8) is a nontrivial continuous function of § € Q,

3. Finally,

{a) if X is o continvous random varicble then each of K'(z) £ 0 and S(z)
5 o continuous function of ¢ € 8,

(b) if X is a discrete random variable then K () is o nontrivial function of
res.

For example, each member of the family {f(x;4) : 0 < 8 < oo}, where f{z;8)
is N{(0, 6}, represents  regular case of the exponential class of the continuous type
because

1

R _ —a* /28
Hmau_ mv - mﬂ.mm
= mv@m]wwamEHOMz\Mﬁmvv —00 < & < 00.

On the other hand, consider the uniform density function given by

.oy | exp{-logd} z€(0,6)
flai0) = ﬁ 0 elsewhere.

This can be written in the form (7.5.1) but the support is the interval (0,8) which
depends on §. Hence, the uniform family is not a regular exponential farily.

Let X3, X3, ...,X, denote a random sample from a distribution that represents
a regular case of the exponential class. The joint pdf or pmf of X1, X»,..., X, is

2 [p(0) 30 Ko+ 3 S(e0) +nalt)|
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Here o2 is any fixed positive oumber. This is a regular case of the exponential class
with
4

2 = pel K{z) ==,
S(z) = ..mmuLom/\lmn a(8 It%ﬂw

Accordingly, Y1 = Xy +Xo + - X = nX is a complete sufficient mﬁ@ﬂmﬁo for
the mean 8 of a normal Q,ﬁ._ﬂwﬁﬂob for every fixed value of the variance o®. Since
E(Y1) = nd, then (Y1) = Y3 /n = X is the only function of ¥} that is an sbgmmma
estirnator of 8; and being a function of the sufficient statistic ¥7, it has a minimum
variance. That is, X is the unique MVUE of 4. Incidentally, since ¥; is a one-to-one
function of X, X itself is also 2 complete sufficient statistic for 6. m

Example 7.5.3 (Example 7.5.1, continued). Reconsider the discussion eon-
cerning the Poisson distribution with parameter § found in Example 7.5.1. Based
on this discussion the statistic Y1 = Mu,.L X; was suffcient. It follows from Theo-
rem 7.5.2 that its family of distributions is complete. Since E{¥1) = nf, it follows
that X = n~1¥] is the unique MVUE of 6. m

EXERCISES
¥ 7.5.1. Write the pdf
f(z; 8(@|mma 328 0<a<oo, 0<8<eo,
zero elsewhere, in the exponential form. If X1, Xa,..., Xy is a random sample from

this distribution, find a complete sufficient statistic ¥1 for § and the unique function
(Y1) of this statistic that is the MVUE of 8. Is ﬁﬁ\b itself a complete mc.mmoﬁbw
statistic? .

¥ 7.5.2. Let X1, Xa,..., X, denote a random sample of size n > 1 from a cistribution

with pdf f(z;8) = 8e~%%, 0 < & < co, zero elsewhere, and § > 0. Then Muun.e. isa
1
sufficient statistic for 4. Prove that (n—1)/Y is the MVUE of 4.

% 7.5.3. Let X1,X3s,...,X, denote a random sample of size n from a &mﬁ%ﬁﬂob
with pdf F(x;8) = 8z 841 , 0 <z <1, zero elsewhere, and g > 0. .

(2) Show that the geomeiric mean (X1 Xz -+ X, )/ of the sample is a ooupﬁwmdm

sufficient statistic for 4.
\4

{b) Find the maximum likelihood estimator of 8, and observe that it is a mﬁhwaoﬁ
of this geornetric mean.

¥* 7.5.4. Let X denote the mean of the random sample X1, X5, ..., X, from a gammea-
type distribution with parameters ¢ > 0 and #=9> 0. OoEHuﬁm E[X.]Z.
Hint: Can you find directly a function () of X such that By (X)) =07 Is
E(X1J) = $(2)7 Why?
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.

7.5.5. Let X be a random variable with pdf of a reguiar case of the exponential
og. m.wo%q that BIK(X)] = —¢'(8)/0(9), provided these derivatives exist, by
differentiating both members of the equality

h%% K() + 8(z) + q(6)] dz = 1

with respect to 6. By a second differentiation, find the variance of K (X).

7.5.6. Given that f(z;0) = exp[0K(z) + S(z) + (@), a <z < b, v < § < §,

Hmﬁammgdm a regular case of the exponential class, show that the moment-generating

function M (t) of ¥ = K(X) is M(t) = exp[g(0) — ¢(8 +8)], v <6+t <.

w(m.wmﬂ .va the preceding exercise, given that E{Y) = E[K(X)] = 6, prove that ¥ is
1)

Hint: Consider M'(0) = @ and sclve the resulting differential equation.

7.5.8. T Xy, Xs,..., X, is a random sample from a distribution that wmm a pdf
which Is a regular case of the exponential ¢lass, show that the pdfof¥; = MN (X

Is of the form fy, (y1;8) = R{y1) explp(f)ys + ng(6)].
%ﬂmi Let Y2 = Xp,..., ¥, = X, be n — 1 awdliary random vatiables. Find the
joint pdf of ¥3,%2,...,Y, and then the marginal pdf of ¥3.

* ﬂ.m.w. Let ¥ denote the medien and let X denote the mean of a random sample of
size n = 2k + 1 from a distribution that is N(u, o2). Compute E(Y|X = E).
Hint: See Exercise 7.5.4.

* 7.5.10. Let Xi1,Xs,...,X, be a random sample from a distribution with pdf

Flz; 8) = 022e%=, 0 AH < ¢o, where § > 0,

T
(a) Argue that Y = Mub, is 2 complete sufficient statistic for 8.
1

(b) Compute E{1/Y) and find the function of ¥ which is the unique MVUE of 8.

* 7.5.11. Let X1, X2,...,Xn, 7> 2, be a random sample from the binomial distri-
bution 5(1, ).

(a) Show that ¥; = X1+ Xz + -+ + X, is a complete sufficient statistic for 4.
{b) Find the function ©(¥1) which is the MVUE of 4.

{e) Let ¥2 = (X1 + X2)/2 and compute F(¥5).

(d) Determine E(Yz|¥1 = y1).

% 7.5.12. Let %nru? -» X% be a random saraple from a distribution with pdf
flz:8) = 0e~%, 0 < z < oo, zero elsewhere where 0 < 4.

{a) What s the complete sufficient; statistic, for example ¥, for 47
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(b) What function of ¥ is an unbiased estimator of 67

% 7.5.13. Let X1, Xo,...,Xn be a random sample from a distribution with pdf
Flz;8) = 6=(1 — 6), 3=0,1,2,..., zero elsewhere, where 0 < <1,

{2) Find the mle, 8, of 6.
™

(b) Show that Muﬁ. is a complete sufficient statistic for 6.
1

(¢) Determine the MVUE of 4.

7.6 Functions of a Parameter

Up to this point we have sought an MVUE of a parameter #. Not always, however,
are we interested inm @ but rather in a function of 4. There are several techniques
we can use to the find the MVUE. One is by inspection of the expected value of a
sufficient statistic. This is how we found the MVUEs in Examples 7.5.2 and 7.5.3
of the last section. In this section and its exercises we offer more examples of the
inspection technique. The second technique is based on the conditional expectation
of an unbiased estimate given a sufficient statistic. The second example illustrates
this technique.

Recall in Chapter 5, under regularity conditions we obtained the asymptotic
distribution theory for maximum Lkelihood estimators (mles). This allows certain
asymptotic inferences (confidence intervals and tests) for these estimators. Such
a'simple theory is not available for MVUEs. As Theorem 7.3.2 shows, though,
sometimes we can determine the relationship between the mle and the MVUE. In
these situations, we can often obtain the asymptotic distribution for the MVUE
based on the asymptotic distribution of the mie. We fllustrate this for some of the

following exaraples.

Example 7.6.1. Let X1, Xs,..., X, denote the observations of a random sample
of size = > 1 from a distribution that is 5(1,8), 0 < & < 1. We know apmm i

n
Y = M.J\,ﬁ“ then Y/n is the unique minimum variance unbiased estimator of 8.

1
Now suppose we want to estimate the variance of ¥/n which is 8(1 — A/n. Let

6 = 8(1 — §). Because Y is a sufficient statistic for 4, it is known that we can
restrict our search to functions of ¥. The meximum likelihood estimate of § which
is given by 8 = (¥/n)(1 — Y/n) is a function of the sufficient statistic and seers to
be a reasonable starting poirt, The expectation of this statistic is given by ™ -

Ef|=E W ? - wz = LB(Y) - B, :
Now E{Y) = r8 and E(Y?) = nd(1 — §) + n?0%. Hence
im G..Mzif:mm%@. ..

b7 n
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If we multiply both members of this equation by n/(n~1), we find that the statistic
o = (nf(n - INY/n)(1l -Y/n) = {n/(n ~ 1))¢ is the vnique MVUE of §. Hence,
the MVUE of §/n, the variance of ¥/n, is §/n.

I E interesting to compare the mle § with 4. Recall from Chapter 5 that the
mlé ¢ is a consistent estimate of § and and that +/n(d — &) is asymptotically normal.
Because,

-1

§-5=5—L5.0=
mslwlmo 0.

it follows that & is also a consistent estimator of 6. Fuarther,

,rl-lz\m:u 1
,\ma&»aen&smﬂlmmlo. T.m.b
Hence, /7(§ — &) has the same asymptotic distribution as V(8 — ). Using the
A-method, Theorem 4.3.9, we can obtain the asymptotic distribution of +/A(8 — §).
H.mﬂ .Q.AS = 8(1@). Then g'(f) = 1—26. Henee, by Theorem 4.3.9, the asymptotic
distzibution of /n(d — ), and (7.6.1}, we have the asymptotic distribution

VR(§ - 8) B N(0,8(1 - 8)(1 - 26)7),
provided & # 1/2; see Exercise 7.6.10 for the case 0 =1/2. m

. A m.oBméw.md different, but also very important problem in point estimation
is o.owmaonm.@ in gw next example. In the example the distribution of a random
gmﬁm Xis ammoﬁ?.& by a pdf f(z;6) that depends upor 8 € Q2. The problem is
to mmﬁwﬁmwmwww mnm.momou& part of the probability for this distribution which is at
or to the of, a fixed point ¢. Thus we sesk an MVUE of F(c; ¢ .8
15 the cdf of N.“ (8, where Fiz:f)

H_.unm.mnvww ﬂ-m‘m.. Let X1, X0,..., X, be a random sample of size n > 1 from a
distribution that is N(6,1). Suppose that we wish to find an MVUE of the function
of 8 defined by

— B 1 —(z—0)* /2

Exmanstw,\mlﬂ (==0712 g — (- ),

d&pm.um ¢ is a fixed constant, There are many unbiased estimators of ${c~8). We first

m&ﬂg one of these, say u(X1), a function of X alone. We shall then compute the

conditional expectation, Blu(X1}|X = Z] = (Z), of this unbiased statistic, given

the sufficient statistic X, the mean of the sample. In accordance with the ﬂwm.\,oumﬁm

of Rac-Blackweil and Lehmann-Scheffé, ©(X) is the unique MVUE of &(c - 4).
Consider the function u{z;), where

1 <
e‘@.bn% 0 HHWM

The expected value of the random variable u(X;) is given by
EulX:)]=1-PX; ~0<c—6]=8(c—96).




396 Sufficiency

That is, u(X:) is an unbiased estimator of ®{c - 6).

We shall next discuss the-joint distribution of X3 and X and the conditional dis-
tribution of X1, given X = %. This conditional distribution enables us to compute
the conditional expeciation Eju(X1)[X = &) = »{%). In accordance with Exercise
7.6.6 the joint distribution. of X1 and X is bivariate normal with mean vector (8,9,
variances of = 1 and 0% = 1/n, and correlation coefficient p = 1//n. Thus the
conditional pdf of X, given X =7, is normal with linear conditional mean ¢

Hl=_o)=%
6+ o F-0)=%

and with variance n—1 “
i1 - =~

The conditional expectation of u(X1), given X =T, is then -

'\8 u(z) mww@é ﬁismwﬂwd da .,

[fEm=l=e .

“The change of variable z = /A(z; —F)/+/n — 1 enables us to write this conditional
expectation as

(@)

I

¢

P(T) = \n awlmnnu\m dz = &{c) -3 T\mﬁol.&; ,

o V2T n=-1

where ¢ = /n(c—%)/vn —1. Thus the unique MVUE of ®{c— ) is, for every
fxed constant ¢, given by p(X) = @[Ric—X)/vn =1} .
In this example the mle of $(c— 8) is ®(¢— X). These two estimators are close

because v/n/(n—1)—1l,asn—co. M )

Remark 7.6.1. We should like to draw the attention of the reader to a rather
important fact. This has to do with the adoption of a principle, such as the principle
of unbiasedness and minimum variance. A principle is not 2 theorem; and seldom
does a principle vield satisfactory resulis in all cases. So far, this principle has
provided quite satisfactory results. To see that this is not always the case, let X
have a Poisson distribution with parameter 8, 0 < 8 < co. We may look upon X as
a random sample of size 1 frorm this distribution. Thus X is a complete sufficient
statistic for 0. We seek the estimator of e™¢ that is unbiased and has minimum
variance. Consider ¥ = (~1)*. We have 7

B(v) =B = 3 S o,

=0

Accordingly, (—1)% is the MVUE of ¢~%. Here this estimator leaves much to be’

desired. We are endeavoring to elicit some information about the number e~
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where 0 < e~% < 1; yet our point estimate is either —1 or +1, each of which is a
very poor estimate of a number between zero and 1. We do not wish to leave the
reader with the impression that an MVUE ® bad: That is not the case at all. We
merely wish to point out that if one tries hard’enough, one can fird instances where
.mﬂn.w a statistic is not good. Incidentally, the maximum likelihood estimator of e—2¢
is, in the case where the sample size equals one, e=**, which is probably 2 much
better estimator in practice then is the unbiased estimator (=1}%, m

EXERCISES .

¥ 7.6.1. Let X1, Xz, ..., X, denote a random sample from a distribution that is

N{8,1), =00 < 8 < o0. Find the MVUE of §2.
Hint: First determine E(X).

¥ 7.6.2. Let X1, X5,..., X, denote a random sample from a distribution that is

?m m%m 8). Then Y = ¥ X7 is a complete sufficient statistic for 4. Find the MVUE
of 2.

7.6.3. In the notation of Exarople 7.6.2 of this section, does P(—c < X <
an MVUE ? Here ¢ > 0. d {—c < X < ¢) have

% 7.6.4. Let X1,X5,..., X, be a random sample from a Poisson distribution with

parameter § > 0,
(a) Find the MVUE of P(X < 1) = (1 +8)e™?. Hint: Letulz) =1, 73 < 1,
%
zeTo elsewhere, and find Eu{X1)[Y = ¢, where ¥ = MN i
1
{b) Express the MVUE as a function of the mle.

(¢) Determine the asymptotic distribution of the mle.

¥ 7.6.5. Let X1, Xz, ..., X, denote a random sample from a Poisson distribution with

parameter § > 0. ¥rom the Remark of this section, we know that £[(-1)%1] = =29,

(a) mw.oé ﬁwﬁ Bl(-1)%: Yy =91] = (1—2/n)%, where Vi = X1 + Ko+ -+ X,.
WSW.. .m_hmd show that the conditional pdf of Xy, Xa,. .., Xy, given Y1 = 1
is multinomial, and hence that of X; given ¥i =y 18 by, I/n). q

(b} Show that the mle of =2 is ¢=2X

() .mEHMM ¥1 = 1%, show that (1~ 2/n)¥* is approximately equal to e~*F when n
is large.

7.6.6. ,P.m in Example 7.6.2, let X3, Xs,..., X, be a random sample of size n > 1
from a distribution that is N(9,1). Show that the joint distribution of X; and X
is bivariate normal with mean vector (8,6), variances o? = 1 and ¢3 = 1/n, and
correlation coefficient p = 1/./n. ? u
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# 7.6.7. Let a random sample of size n be taken from a distribution that has the pdf

F(z:8) = (1/8) exp(—2/6)}T 10,00y (). Find the mle and the MVUE of P(X < 2).

¥ 7.6.8. Let X3,Xp,...,X, be a random sample with the comumon pdf fiz) =

§~1e==/% for x > 0, zero elsewhere; that is, f{z) is a T'(1,6) pdf .

(a) Show that the statistic X = n~* 35, X is a complete and sufficient statistic
for 4.

(b) Determine the MVUE of 6.
(¢) Determine dw.m mle of 6. :

(d) Often, though, this pdf is written as f(z} = 7¢™7%, for z > 0, zero elsewhere.
Thus T = 1/9. Use Theorem 6.1.2 to determine the mle of 7.

(&) Show that the statistic X =n =1} 1. X;isa ncBEmdm and sufficient statistic
for +. Show that (n — 1)/(nX) is the MVUE of =~ = 1/§. Hence, as ugual
the Hmﬁvuogw of the male of ¢ is the mle of 1/, but, in this situation, the
reciprocal of the MVUE of 8 is not the MVUE of 1/4.

(£f) Compute the variances of each of the unbiased estimators in Parts (b} any

(e). .

¥* 7.6.9. Consider the situation of the last exercise, but suppose we have the following
two independent random samples: (1). X1, Xz,..., X is a random sample with the
common pdf fx(z) = g—1e~t/? for & > 0, wero eisewhere, and (2. ¥1,Y3,..., 1,
is a random sample with common pdf fy(y) = 7e¢~™, for y > 0, zero elsewhere.
Assume that 7 =1/6.

The last exercise suggests that, for some constant ¢, Z = X X /Y might be an unbi-
ased estimator of §2. Find this constant ¢ and the variance of Z. Hint: Show that
X/(8%Y) has an F-distribution.

7.6.10. Obtain the asymptotic distribution of the MVUE in Example 7.6.1 for the
case 8 = 1/2.

7.7 The Case of Several Parameters

.

In many of the interesting wHoEmBm we encounter, the pdf or pmf may not depend
upon a single parameter 8, but perhaps upon two {(or more] parameters. In general,
our parameter space {2 will be a subset of BP, but in many of our examples p will
be two.

Definition 7.7.1. Let X1, Xo, ..., Xn denote ¢ random sample from a distribution
that has pdf or pmf f(2;8), where @ € Q0 C RP. Let § denote the support of X.
Let Y be an medimensional random vector of statistics Y == (¥1,...,¥,), where
Y = u( X1, Koy ..o, Xa), fori =1,...,m. Denote the pdf or pmf of Y by Ny @)
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for y € ™. The random vector of statistics Y is jointly sufficient for 8 if ond

only if
[T, f(2:6)
= =H e Tn .
A 3;0) (#1:B2,...,Tn), forallz; &8,

where H(x:,22,...,2,) does not depend upon 8,

In general m # p, Le., the number of sufficient statistics does not have to be
the same as the number of parameters, but in most of our examples this will be the
case.

As may be anticipated, the factorizatior theorem can be extended. In our
notation it can be stated in the following manner. The vector of statistics Y is
jointly sufficient for the parameter 8 £ 2 if and only if we can find two nonnegative
functions %; and ky such that

ﬁ_uﬁa&@u =k (y; O)ka(21,. .., 75), forall z; €8, (7.7.1)

i=1
where the function &y (21, 2s,...,2,) does not depend upon 6.

ﬂxﬁnﬂm T7.7.1. Let X1, X,..., X, be a random sample from a digtribution hav-
ing pdf
s OB <z < 0
um um = 28 1 2 1 2
F(z;0:,62) A 0 : elsewhere,

éw@...w =00 < <oo, 0<by <00 Let Y] < ¥ <+ < ¥y, be the order statistics.
The joint pdf of ¥7 and ¥, is given by

n(n — 1) -
[30g)m (n—02)"™%, -2 <y <y <1+ 06,

Fri e (i, Ui 01, 62) =

mﬁm equals zero elsewhere. Accordingly, the joint pdf of X1, Xa,..., X, can be
written, for all points in its support (all 2; such that 8; — 82 <my < 81 + ),

A.I.._..I.va - n(n — 1) [max(z;) — He.bmﬁa.u”_alu A .
264 (2647 n{n - 1)[max{z;) - Eu.bﬁﬁa.zaluv .

Since min{z:) £ #; < u.bm.xma&u J = 1,2,...,n, the last factor does not depend
upon the parameters. Either the definition or the factorization theorem assures us
that ¥7 and ¥, are joint sufficient statistics for §; and 4. m

The concept, of 2 complete family of probability density functions is is generalized
as follows: Let

.ﬁ%ﬁﬁfdmu:.uekwmv . 8 mmmuw

denote a family of pdfs of k random veriables V4, V4, ..., ¥ that depends upon the
p-dimensional vector of parameters @ € Q. Let u(vy,va,. .., u) be a function of
V1,2, .., v (but not a function of any or all of the parameters). If

.m.mmgﬁ.“\u; A\w. EERE] H\.ﬁu_ =

—r=
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For our last example, we consider a case where the set of parameters is the cdf.

Example 7.7.5. Let Xy, X»,..., X, be a random sample having the common con-
timuous cdf F(z). Let ¥3 < Y2 < -+ < ¥ denote the corresponding order statis-
tics. Note that given Y7 = 31, Y% == #2,...,¥n = Un, the conditional distribution
of X1, Xs,..., X, is discrete with probability .w_, on each of the n! permutations of
the vector (Y1,¥a,...,¥n), (because F(z) is continuous we can assume that each
of the values ¥y, 4z, -- ., Yn arve distinet). That is, the conditional distribution does
not depend on F(z). Hence, by the definition of sufficiency the order statistics are
sufficient for F(z). Furthermore, while the proof is beyond the scope of this book,
it can be shown that the order statistics are also complete; see page 72 of Lehmann

and Casella (1998).
Let T = T'{z1,%2,...,%s) De any statistic which is symmetric in s arguments;
ie., T(z1,22,---,%n) = T(Tss Tig,- .., o2,) for any permutation @atasu e Za)

of Aarauu -y Tn). Then T'is a function of the order statistics. This is useful in
determining MVUEs for this sltuation; see Exercises 7.7 12 and 7.7.13. m

EXERCISES

~
3 7.7.1. Let ¥; < Yz < ¥: be the order statistics of a random sample of size 3 from
the distribution with pdf.

-

m.nbA mv fi <z <o, ~0<h <oo, 0K <00

;01,92) =
F(301,8a) o elsewhere.

Find the joint pdf of Zy = ¥y, Ze = Ya, and Z3 = ¥} + Y2 + Ya. The corresponding
transformation maps the space {(y1,%2,53) t 1 < 31 < 32 < ys < co} onto the
space

mﬁNmevau P <z << mN..w I.@Hu\w < 00w

Show that Z; and Z3 are joint sufficient statistics for 81 and 2.

7.%7.2. Let X1,Xa,..., X, be a random sample from a distribution that has a pdf
n m

of form (7.7.2) of this section. Show that ¥y = ¥ K1(Xi),...,Ym = 3 Kmn(Xi)
L8] £l

have a joint pdf of form (7.7.4) of this section.

7.7.3. Let (X1, 1), (2, ¥2),- .., (Xn, ¥r) denote a random sample of size n w.oB
a bivariate normal distribution with means pj m.ba P, Huomnué gmbomm o} and

g3, and correlation coefficient p. Show that MU.N: Mﬁu M\NP Mu\f mbm

n -

MHN ;Y; are joint complete sufficient statistics for the five parameters. Are X =

vas, Mﬁa,m Wﬁx&;ﬁm\hsn:,mwuWﬁxeﬂw\ﬁi?&a
1 1
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™

3 (X = X) (¥~ ¥)/(n — 1)8,8, also joint complete sufficient statistics for these
1

parameters?

T.7.4. Let the pdf f(; #1,82) be of the form
muﬂuwuwhmf %uvmwwwm.ﬂv + p2(81,02) Ka(z) + Slz) + q1 {84, mwxu a<xz<bh,

mmwomHmméwﬂo.ﬁoﬁmm?&”&mm?v.mwoéﬂw&ﬂ%ﬁﬁmfmmuo@wdmdﬁ.wﬁgﬁﬂg
form .

explpy (61, 02} K () + 5(z) + q1(01,8)], a <z <h,

zero elsewhere. This is the reason why it is required that no one Kl(x) be a
linear homogeneous function of the others, that is, so that the number 0m sufficient
statistics equals the number of parameters.

7.7.5. In Example 7.7.2, find the MVUE of the standard deviation /85

% 7.-7.6. Let Xy, Xz, ..., X, be 2 random sample from the uniform distribution with

pdf F(z; 81, 0z) = 1/(202), 61 — 83 < = < §1 + fo, where —co < ) < oc and d2 >0,
and the pdf is equal to zero elsewhere.

{2) Show that ¥; = min(X;) and ¥, = max(X;), the joint sufficient statistics for
#; and #a, are complete.

(b) Find the MVUEs of 6; and 6,.

¥ T.7.7. Let X1,Xa,...,X, be a random sample fror N (81, 62).

{(a) I the constant b is defined by the equation P(X < b} = (.00, find the mle
and the MVUE of &.

(b) If cis a given constant, find the mle and the MVUE of P(X < c).
7.7.8. In the notation of Example 7.7.3, show that the mle of p,p; is n—2Y; Y.
T.7.9. Refer to Example 7.7.4 on sufficiency for the multivariate normal model.

(a) Determine the MVUE of the covariance pararneters o;.

(b) Let h= Mu.ﬁﬁM 4, where aq, ..., ax are specified constants. Find the MVUE

for h.
¥ 7.7.10. In a personal communication, LeRoy Folks noted that the inverse Gaussian
. pdf
92 N2 [~By(x— 1)
%ﬁau.mrm& = Awqﬁuv exp ﬁ T % , 0<z<oo, {7.7.9)

where 7 > 0 and 62 > 0 is often used to model lifetimes. Find the complete
sufficient statistics for {8, 82), if X1, Xs,..., X Is a random sample from the dis-
tribution having this pdf.
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that nowhere was this needed or assumed. The pdf or pmf may depend upon
any finite number of parameters. What is essential is that the hypothesis Hp and
the alternative hypothesis H1 be simple, namely that they completely specify the
distributions. With this in mind, we see that the simple hypotheses Hy and H; do
not need to be hypotheses about the parameters of a distribution, nor, as a matter

of fact, do the random varisbles X1, Xa, ..., X, need to be independent. That is, if -

Hyp is the simple hypothesis that the joint pdf or pmf is g(z1, 2,...,%n), and if H
is the alternative simple hypothesis that the joint pdf or pmf is k{1, 22,...,20),
then € is a best critical region of size o for testing Hy against H; if, for k> O:

bﬁﬂuuﬁw“...nﬂﬁu

1.
h(z1, T2, -2 Tn)

<k for (m1,22,...,%,) €C.

9(T1, %2, Tn)
?h.ﬂu& T2y - us\wﬁu

3. @ = Py [(X1, Xz, ..., Xn) € C).

2. =k for (z1,%9,...,%n) € C°

An illustrative example follows.

Example 8.1.3. Let X, ..., X, denote 2 random sample froin a distribution which
has a pmf f(z) that is positive on and only on the nonnegative integers. It is desired
to test the simple hypothesis

x!

t.n.
. _ ) & z=0,1,2,...
Ho: flz) = ﬁ 0 elsewhere,

against the alternative simple hypothesis

] _ [ GFEt z=0,1,2,... .
H : flz) = ﬁ 0 elsewhere.
Here
gl m) e/ (@mlza! -zl
B0 sa)  (B)F(G)R et

(2e~LymaE =

k13

[Tz

1

If & > 0, the set of points {®1,%2,...,Ta) such that

n T
M z: | log2 —log m?uu <logk ~nlog2e™ ) = ¢
1 1

is a best eritical region . Consider the case of & = 1 and n = 1. The preceding
inequality may be written 2%t /! < ¢/2. This inequality is satisfied by all points
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in the set C = {z1 : z; = 0,3,4,5,...}. Thus the power of the test when Hp is true
is
P, (X, €C) =1~ Py, (X1 =1,2) =0.448,

approximately, in accordance with Table I of Appendix B; i.e., the level of this test
is 0.448. The power of the test when Hy is true is given by

Py (X1 €C) =1~ Py (X1 =1,2)=1=(3+3 =0625 m
Note that these results are consistent with Corollary 8.1.1.
Remark 8.1.2. Tn the notation of this section, say C is a critical region such that
a= \ L6y aad = [ L(#7),
=) [ed
where o and 3 equal the respective probabilities of the Type I and Type II errors

associgted with C. Let dy and ds be two given positive constants. Consider a
certain linear function of o and 3, namely )

& .\o L) +d; [ 16 = % L&)+ do T| \a ,23_

i + \q G L{0) — daL (")

I

If we wished to minimize this expression, we would select C' to be the set of all
(%1,%2,...,%n) such that
A1 L") = da L(8") < 0

or, equivalently,

L") _ ds

e <o for all (zy,z9,...,20) € C,
which zccording to the Neyman-Pearson theorem provides a best critical region
with k = da/d;. That is, this critical region C is one that mirimizes dia + daf3.
There could be others, including poiats on which L(8")/L{8") = d»/d;, but these
would still be best critical regions according to the Neyman-Pearson theorem. =

EXERCISES

* 8.1.1. In Example 8.1.2 of this section, let the simple hypotheses read Hp : § =

#=0and Hy : 0 = 6" = =1. Show that the best test of Hy against H1 may be
carried out by use of the statistic X, and that if n = 25 and o = 0.05, the power of
the test is 0.999+ when H; is true.

¥ 8.1.2. Let the random variable X have the pdf f(z;8) = (1/8}e~%/¢, 0 < z < o0,

zero elsewhere. Consider the simple hypothesis Hy : § = # = 2 and the alternative
hypothesis Hy : § = 87 = 4. Let X7, X» denote a random sample of size 2 from this
distribution. Show that the best test of Hy against ff; may be carried out by use
of the statistic X7 + Xp. -
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 8.1.3. Repeat Exercise 8.1.2 when Hy: 8 = 8" = 6. Generalize this for every
8" > 2. :

* 8.1.4. Let X1, X5,..., X1o be arandom sample of size 10 from a onEm.H distribution
N(0, o.wv Find a best oﬁﬂo& region. of size o = 0.05 for testing Hy : u. =1 against
Hy: ¢ = 2. s this a best B,Hso& H.mmuou of size.0.05 for testing Hy : 0* = | against
Hy:0? =47 Against Hy:e2 =0f > 17

% 8.1.5. If X1, Xz, ..., X, is a random sample from a distribution having pdf of the
formn f(z;0) = 82%-1, 0 < = < 1, zero elsewhere, show that a best critical region

o
for testing Hy : 6 = 1 against Hy : 0 =2is C = { (21, %2, -, %n) HQMHHH,,.

=1

% 8.1.6. Let X1, Xs,..., X0 be arandom sample from a distribution that is N (61, 82).
" Find a best test of the simple hypothesis Hy: 8, =8, =0, 0z = 85 = 1 against the
alternative simple hypothesis Hy : &, =6 =1, fp = 8] = 4.

# 8.1.7. Let Xy, Xo,...,Xn denote a random sample WNE a normal distribution
N{8,100). Show that C = § (1,%2,...,2n) 1 C ST = Mas\a is a best critical
region for testing Hy : § == 75 against H; : § = 78, Find qw and ¢ so that

P [(X1, Xz, .., Xn) € C == P, (X 2 ) = 0.05
and
Py, [(X1,X2,...,X5) €C) = P (X = ¢) =0.90,

approximately.

X 8.1.8. If Xy, Xa,...,Xn is a random sample from a beta distribution with param-
eters @ = B = § > 0, find a best critical region for testing Hy : ¢ = 1 against
H :6=2. i

% B8.1.9. Let Xy, Xa,...,X, be iid with praf f(z;p) = p*(1 —p)*~%, z = 0,1, zero

elsewhere. Show that € = < {(&1,...,%Ta): Maﬂ. < ¢y is a best critical region for
1

wal—

testing Hy : p = 1 against H; : p = 1. Use the Central Limit Theorem to find r and
n

Th
¢ 50 that approximately P, Mun.ﬁ. Lc)=0.10and P, M,ﬁ. <e| =0.80.
1 1

* 8.1.10. Let X1,Xs,...,Xyp denote a random sample of size 10 Woﬁwom. Poisson

distribution with mean #. Show that the critical region C defined by Muﬁ& >3is

a best critical reglon for testing Hp : 8 = 0.1 against Hy : § = 0.5. UQ#QB.E? for
this test, the mum,EbomBom level & and the power at 6 = 0.5.
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8.2 Uniformly Most Powerful Tests

This section will take up the problem of a test of a mvaHm hypothesis Hy against
an alternative composite hypothesis H;. We begin with an example.

Example 8.2.1. Consider the pdf

. e®/f Q<r<oo
Fl@:i8) = _h elsewhere,

of Exercises 8.1.2 and 8.1.3. It is desired to test the simple hypothesis Hy: 4 =2
against the alternative composite hypothesis Hy : 8 > 2. Thus = {8 : 8 > 2}.
A random sample, X1, X3, of size n = 2 will be used, and the critical region is
C = {{z1,22) : 9.5 € 21 + 22 < oo}, It was shown in the example cited that the
significance level of the test is approximately 0.05 and the power of the test when
@ = 4 is approximately 0.31. The power function v(4) Om the test for all § > 2 will
now be obtained. We have

9.5 p9.5-zg 1 % + Ta
o Jo g2 g :

_ Am -+ @mv mlm.m\mu 2 <.

+(8)

] =

For example, v(2) = 0.05, v(4) = 0.31, and 7(9.5) = 2/e=0.74. It is shown (Exercise
8.1.3) that the set € = {(&1,%2) : .5 < ©1 + 2+ < 00} is a best critical region of size
0.05 for testing the simple hypothesis Hy : € = 2 against each simple hypothesis in
the composite hypothesis H; : 8> 2. =

The preceding exarnple affords an jllustration of a test of a simple hypothesis
Hy that is a best test of Hp against every simple hypothesis in the alternative
composite hypothesis Hy. “We now define a critical region when it exists, which
is a best critical region for testing a simple hypothesis Hy against an alternative
composite hypothesis Hy. It seerns desirable that this critical region should be a
best critical region for testing H against each simple hypothesis in K. That is,
the power function: of the test that corresponds to this critical region should be at
least as great as the power function of any other test with the same significance
level for every simple hypothesis in H;.

Definition 8.2.1. The critical region C is o uniformly most powerful (ITMP)
critical region of size o for testing the simple hypothesis Hy against an aliernative
composite hypothesis Hy if the set C is a best critical region of size o for testing
Hy against each simple hypothesis in Hy. A test defined by this critical region C is
celled o uniformly most powerful (UMP) test, with significance level ¢, for
testing the simple hypothesis Hy against the elternative composite hypothesis Hy.

As will be seen presently, uniformly most powerful tests do.not always exist.
However, when they do exist, the Neyman-Pearson theorem provides a technique
for finding them. Some illustrative examples are given here.
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EXERCISES

*g§.2.1. Let X have the pmf f(z; $ = §%(1 — §)1~*, z = 0,1, zero elsewhere. We
test the mwbw_m hypothesis Hp : 6 = m.mm.ﬁmﬁ the alternative composite angmmﬁ
Hy :8 <3 U% taking a random mmeEm of size 10 and rejecting Ho : 6 = Hm and
ow@ if ﬂwm observed values 1, Tz,. .-, 21 of the sample observations are mﬁoﬁ that

MU.Q < 1. Find the power function v{(8), 0 < 6 < &, of this test.
1

¥ 8.2.2. Let X have a paf of the form f(x;8) = 1/4, 0 < x < ¢, zero elsewhere. Let
V; < Yy < Y3 < Y denote the order statistics of a random sample of size 4 from
this distribution. Let the odmmﬁ&. value of Yy be y4. We refect Hyp : 6 = 1 and
accept Hy : 6 # 1 if either 4 £ 3 or 34 > 1. Find the power function 7(8), 0 <6,
of the test.

%-8.2.3. Consider a normal distribution of the form N(8,4). The simple hypothesis
Hy : 6 = 0 is rejected, and the alternative composite kypothesis M : 6§>01is
accepted if and oE% if the observed mean ¥ of a random sample of size 25 is greater
than or equal to §. Find the power function (f), 0 < 6, of this test.

¥ 8.2.4. Consider the distributions N (u1,400) and N (ug,225). Let 6 = py — po. Let
% and T denote the observed means of two independent random samples, each of
size n, from these two distributions. We rejecs Hy : 6 = 0 and accept Hi : g>0if
and only T ~7 > e If 4(#) is the power function of this test, find n and c so that
+(0) = 0.05 and (10} = 0.9, approximately.

8.2.5. Ifin mxm.npvwm 8.2.2 of this section Hy : 6§ = &', where & is m fixed positive

number, and H; : 8 < ¢, show that the seb < (#1,%2,...,%n) “Muﬁ <crisa
1
uniformly most powerful critical region for testing Hy against Hi.

8.2.6. If, in Example 8.2.2 of this section, Hy : § = ¢, where §' Is a fixed positive
mumber, and Hy : @ 5 #', show that there is no E&QB@ most powerful test for
testing Hp against H.

% 8.2.7. Let X1, X5, ..., Xo5 denote a random sample of size 23 from a normal dis-
tribution N(#,100). Find a uniformly most powerful critical region of size & = o 10
for testing Hy : 8 = 75 against Hy : 8 > 75.

* 8.2.8. Let Xy, Xs,..., X, denote 2 random sample from 2 normal distribution
N(6,16). Find the sample size n and 2 uvaiformly most powerful test of Ho @ 8 =25
against Hy : 6 < 25 with power function () so that approximately v(25) = 0.10
and ~+(23) = 0.90.

* 8.2.9. Consider a distribution Wwﬁum a pof of the mowB flz; 0y =6%(1~ 37& z=
0,1, zero elsewhere. Let Hp: 6 = mb@ Hy:86> no. Use the central limit theorem
to determine the samplesize nof 2 nm.wmoB sample 50 that a uniformly most powerful
test of Hy against Hy has a power function (6}, with approximately v(35) = 0.05
and (%) = 0.90.

>

«

-
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8.2.10. Hlustrative Exaraple 8.2.1 of this section dealt with 2 random sample of
size n = 2 from a gamma distribution with o = 1, § = 6. Thus the mgf of the
distribution is {1 — 8£)™%, ¢ < 1/8, § 2 2. Let Z = X + Xo. Show that Z has
a gamma distribution with @ = 2, = §, Express the power function y(6) of

Example 8.2.1 in terms of a single integral. Generalize this for a random sample of
size 7.

¥ 8.2.11. Let X3, Xs,...,X. be a random sample from a distribution with pdf

fla;8) = 02°71, 0 < z < 1, zero elsewhere, where § > 0. Find a suficient

statistic for § and show that a uniformly most powerful test of Hp : § = 6 against
H; : 8 < 6 is based on this statistic.

* §.2.12. Let N. have the pdf fiz 3 = §%(1 - 9)*%, £ = 0,1, zero elsewhere: We
test Hy: 80 = m wmﬂbmd Hi :8< 2 5 taking a random mm.BEm X1, Xy, X5 of

size 1 = 5 and refecting Hy f ¥ = MN is observed to be less than or equal to a

constant c.
(2) Show that this is a uniformly most powerful test.
(b) Find the significance level when ¢ = L.
(¢) Find the significance level when ¢ = (.

(d) By using a randomized fest, as discussed in Example 5.6.4, modify the tests

given in Parts (b) and {c) to find a test with significance level o = 2.

¥ g.2.13. Let X3,..., X, dencte a random sample from a gammea-type distribution
witha=2and §=0. Let Hy:0=1and H :6 > 1.

(a) Show that there exists a uniformly most powerful test for Hy against Hi,
determine the statistic ¥ upon which the test may be based, and indicate the
nature of the best critical region.

(b} Find the pdf of the statistic ¥ in Part (a). If we want a significance level of
0.05, write an equation which can be used to determine the critical region.

Let v(8), § > 1, be the power function of the test. Express the power function
' as an integral.

8.3 Likelihood Ratio Tests

In the first section of this chapter we presented most powerful tests for simple versus
simple hypotheses. In the second section, we extended this theory to uniformly
most, powerful tests for essentially one-sided alternative hypotheses and families of
distributions which have monotone likelthood ratio. What about the general case?
That is, suppose the random variable X has pdf or praf -f(z; 8) where 8 is a vector
of parameters in Q. Let w € and consider the hypotheses

Hy: @&wversus Hy: 8 € Qnws. (8.3.1)
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8.3.3. Verify Equations (8.3.4) of Example 8.3.1 of this section.
8.3.4. Let X1,...,Xa and Y3, ..., Y follow the location model
X; = G +Z;, i=1...,n
Y, = bt+ipy i=1,...,m
(8.3.9)
where Z1, ..., Znim are iid random variables with common pdf f{z). Assume that
‘m‘.thv = {J and <mHmNsv = f3 < 00,
(a) Show that E(X;) = 61, B(Y:) = b2, and Var(X;) = Var(Y;) = 6s.
(b} Consider the hypotheses of Example 8.3.1; i.e,
.m.o 14 = mu VEersus ._.m.w : 6 Nm %u.
Show that under Hy, the test statistic T given in expression (8.3.3) has a
limiting N(0, 1) distribution.

{c} Using Part (b), determine the corresponding large sample test Em&mmoﬂ.ﬂn&
of Hy versus H:. (This shows that the test in Example 8.3.1 is asymptotically
correct. )

8.3.5. Show that the likelihood ratio principle leads to the same test when testing
a simple hypothesis Hy against an alternative simple hypothests ﬂr as that given
by the Neyman-Pearson theorem. Note that there are only two points in £2.

% 8.3.6. Let X1,Xz, ..., X, bearandom sample from the normal &m._ﬁdﬁ.monp ZA.P 1).
Show that the likelihood ratio principle for testing Hp : 8 = &, where §' Is specified,
against Hy : @ # ¢ leads to the inequality [ — 6] 2 c.

{a) Is this 2 uniformly most powerful test of Hy against Hy?
(b) Is this a nniformly most powerful unbiased test of Hy against H,?

* 8.3.7. Let X1, Xs,. . X be fid N'(61,82). Show that the likelihood ratio principle
for testing Hy : 82 = 0} specified, and 85 cﬂm@m%&q against Lm“m 2 Gy 5 B, G
unspecified, leads to a test that rejects when Mﬁam wz)? <o or M@s —%)? = cay

1

where ¢; < e are selected appropriately.
+ 8.3.8. Let X1,...,X, and Y3,..., Ym be independent random samples from the
distributions N(81,83) and N{82,84), respectively. . )
(a) Show that the likelihood ratio for testing Hp : f1 = ¥, 63 = 64 wm%b% all
alternatives is given by

7 nf2 rop m/2

P L I DI g ML

1 L1

M&? ~u?+ > (i —wf?| [ (m+n)
1 1

ntmy/2
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where u = (nZ -+ m7) /(n + m).

{b) Show that the likelihood ratio for testing Hy : 63 = 84 with ¢, and 8, unspec-
ified can be based on the test statistic F' given in expression (8.3.8)

* 8.39. Let Y] < ¥2 < -+ < V5 be the order statistics of a random sample of size
n =5 from a distribution with pdf f(z;8) = Le™#~l, —co < 7 < oo, for all real
f. Find the likelihood ratio test A for testing Hy : 8 = against Hy : 8 # 8y,

¥ 8.3.10. A random sample X7, X,..., X, arises from a distribution given by
Hy: fz;0) = .wj 0<z<b, zero mpmm.ipmwm_

ar

Hy: flz;8) = .w.m..a\m, 0<z<oo, zeroelsewhere.

Determine the likelihood ratio (A) test associated with the test of Hy against H;.

% 8.3.11. Consider a random sample X, Xz,..., X, from a distribution with pdf

fl;8) =001 — )%, 0 < = < 1, zero elsewhere, where § > 0.

(a) Find the form of the uniformly most powerful test of Hy : 8 = 1 against
mu. M m > 1.

(b) What is the itkelirood ratio A for testing Hy : § = 1 against H: : § 5 17

¥ 8.3.12. Let X3, Xz,..., Xpand ¥1, %5, .. ., ¥, be independent random samples from
two normal distributions N{u,¢?) and N(ug, o), respectively, where o2 is the
common but unknown variance.

(a) Find the likelihood ratio A for testing Hp : u1 = up = 0 against all alterna-
tives.

(b) Rewrite A so that it is a function of a statistic Z which has a well-known
distribution.

{c} Give the distribution of Z under both null and alternative hypotheses.

8.3.13. Let (X1, Y1), (X2,%2),...,(Xn, Ys) be a random sample from a bivariate
normal distribution with 1, 42, 0 = 0 = ¢, p = £, where 1, ya2, and o > 0 are
waknown real nurobers. Find the likelihood ratio A for testing Fg : py = s = 0, o2
unknown against all alternatives. The Likelihood ratio A is & function of what
statistic that has a well-kmown distribution?

8.3.14. Let X be a random variable with pdf fx (z) = (2bx)~* exp{~|x|/bx}, for
—o0 <% < 00 and by > 0. First, show that the variance of X is 0% = 20%.

Now let ¥, independent of X, have pdf fy(y) = (2by)~lexp{~|yl/by}, for
=00 < < oo and by > 0. Consider the bypotheses

=

Hy: 0% = 0% versus Hy @ 0% > od.
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7.7.11. Let X3, Xo,..., X be a random sample from a N{f, fa) distribution.
(a) Show that B[{X1 ~ 61)*] = 363.
(b} Find the MVUE of 363.

7.7.12. Let X4,..., X, be a random sample from a distribution of the continucus
type with cdf m.@a Suppose the mean, u = E(X1), exists. Using Example 7.7.5,
show that the sample mean, X =n~1 ¥ ., X; is the MVUE of p.

7.7.13. Let X31,..., X, be a random sarple from 2 distribution of the continuous
type with cdf F(z). Let 8 = P{X| S a) = F(a), where o is known. Show that the
proportion nT1#{X; < a} is the MVUE of 6.

7.8 Minimal Sufficiency and Ancillary Statistics

In the study of statistics, it is clear that we want to reduce the data contained in
the entire sample as much as possible without losing relevant information about the
important characteristics of the underlying distribution. That is, a large collection
of nurnbers in the sample is not as meanivgful as a few good summary statistics of
those data. Sufficient statistics, if they exist, are valuable because we know that
the statisticians with those summary measures bave as much information as the
statistician with the entire sample. Sometimes, however, there are several sets of
joint sufficient statistics, and thus we would like to find the simplest one of these sets.
For illustration, in a sense, the observations Xy, Xa,..., X5, n > 2, of a random
sample from N(61,82) could be thought of as joint m&opmna statistics for 6 and fs.

We know, however, that we can use X and S* as joint sufficient statistics for those
parameters, which is a great simplification over using X1, Xz, ..., Xn, particularly
if » is large.

In most instances in this chapter, we bave been able to find 2 single sufficient
statistic for one parameter or two joint sufficient statistics for two parameters.
Possibly the most complicated cases considered so far are given in Example 7.7.3,
in which we find k+k(k+1)/2 joint sufficient statistics for k-+k(k-+1)/2 parameters;
or the multivariate normal distribution given in Example 7.7.4; or the use the order
statistics of a random. sample mow. some completely unknown distribution 0m the

continuous type as in Exaraple 7.

What we would like to do is to %mbmm from one set of joint sufficient statistics to
another, always reducing the number of statistics involved until we cannot go zny
further without losing the sufficiency of the resulting statistics. Those statistics thit
are there at the end of this reduction are called mindmal sufficient statistics. These
are sufficient for the parameters and are functions of every other set of sufficient
statistics for those same parameters. Often, if there are k parameters, we can find &
joint sufficient statistics that are minimal. In particular, if there is one parameter,
we can often find a single sufficient statissic which is minimel. Most of the earlier
examples that we have considered illustrate this point, but this is not always the
case as shown by the following example.
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Example 7.8.1. Let X1, Xs,..., X, be a random sample from the uniform distri-
bution over the interval (§ — 1,8 + 1) having pdf

S(#8) = ($)To-1,0+1)(x), where ~ oo < 8 < oo

The joint pdf of X, Xs,..., X, equals the product of (£)* and certain indicator
functions, namely i

(G i Tomr,ny (@) = (307 {To— 1,04y (min(@:)] FH{I(p—r 61y [moax ()]},

because § — 1 < min{z:) < z; < max(x;) < 841, 7=1,2,...,n. Thus the order
statistics ¥1 = min(X;) and ¥, = max(X;) are the sufficient mﬁmﬂmﬂg for 8. These
two statistics actually are minimal for this one parameter, as we cannot reduce the
nurober of them to less than tiwo and still have suficiency.

~ There is an observation that helps us observe that almost all the m:..mwembd statis-

tics that'we have studied thus far are minimal. We have noted that the mle § of § is
a function of one or more sufficient statistics, when the Iatier exists. Suppose that
this mle § is also sufficient. Since this sufficient statistic f is a function of the other
sufficient statistics, Theorem 7.3.2, it must be minimal. For example, we have

1 M&mm“&o § =X of 6 in N{§,0?), o* known, is 2 minimal sufficient statistic
or 8.

2. The mle § = X of ¢ in a Poisson distribution with mean 4 is a minimal
sufficient statistic for 4.

3. d.pm. mle § =Y, = max(X;) of § in the uniform distribution over (0,8) is a
miniral sufficient statistic for 4,

4. The maximum lkelihood estimators §; = X and 8 = S2 of 8, and & in
N (81, 62) are joint minimal sufficient statistics for 9, and 85.

From .ﬂwﬁmm examples we see that the minimal sufficient statistics do not need
to vm. unique, for any ome-to-one transformation of them alse provides minimal
sufficlent statistics. The linkage between minimal suficient statistics and the mle,

however, does not hold in many interesting instances. We illustrate this in the next
two examples.

wunmnnm.mm 7.8.2. Consider the model given in Example 7.8.1. There we noted that
¥] = min(X;) and ¥, = max(X;) are joint sufficient statistics. Also, we have

-l <Yy<f+1
or, equivalently,
Yo~-1<8<i+ 1

Hence, to maximize the likelthood function so that it equals ﬁ )™, 8 can be any

value between ¥, — 1 and ¥; + 1. For example, many ms.ﬂwﬂowmbm take the mle to
be the raean of these two end points, namely o

Ya-l+Yitl _Ni+Y,

%” =
2 2 7
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for all ¢ > 0. Then
Z =X, Xy ..., Xn) = w(fW,0Ws, ..., 0W5) = u(Wy, Wa,...,Wa).

Since neither the joint pdf of Wy, Wa, ..., Wy, nor Z contain &, the &mwﬂvﬁﬁoﬁ of
Z must not depend upon . We say that Z is a scale-invariant statistie.
H_Wm mowod&bm are some examples of scale-invariant statistios: X1/(X1 + Xz),

X3 \M X;)/ max(X;), and so on. m

HHNEE@ 7.8.6 AHOomﬂoa and Scale Invariant Statistics). Finally, consider
a random sample X, Xo, ..., X, which follows a location and scale model as in
Example 7.7.5. That is,

Xi=6+6W;, i=1,...,n ﬁﬂmmv

where W; are iid with the common pdf f(t) which is free of 8, and f3. In this case

the pdf of X; is 851 f((x — §1)/82). Consider the statistic Z = u(X1, Xz,...,Xy)

where ‘ -
wlezy + 4, ..., 20 +d) = w(T1,. .-, Tn)-

H?mh
Z=u(Xy,..., Xn) = u{fr +0W1,. .., 01 4 0oWr) = u(Wy,..., Wy).

Since neither the joint pdf of W1,..., W, nor Z contains 64 and 8, the distribution
of Z must not depend upon 8; nor fz. Statistics such as Z = u(Xy, Xs,..., X,.) are
called location and scale invariant statistics. The following are four examples
of such statistics:

(2) Ty = [max(X;) — min{X;)]/85,
(b) Ty = i (X = Xa)?/ 5%,
() To = (X: —X)/5,

(d) Ta=|X;~ X;|/8,, ;i # ]

Thus these Jocation invariant, scale invariant, and location and scale invariant
statistics provide good illustrations, with the appropriate model for the pdf, of an-
cillary statistics. Sinee an ancillary stabistic and a complete (minimal) sufficient
statistic are such opposites, we might believe that there is, in some sense, o rgle-
tionship between the two. This is true and in the next section we show that dw&.
are independent statistics.

EXERCISES ’ .

7.8.1. Let X3, X3z, ..,Xn be a random sample from each of the following distribu-
tions involving the parameter 8. In each case find the mle of & and show that it-is
a sufficient statistic for 8 and hence a mintmal sufficient statistic.
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(a) b(1,8), where 0 < 6 < 1.

(b) Poisson with mean § > 0.

{c) Gamma with =3 and 5=0>0.
(d) N(8,1), where —co < § < co.

(e) N(0,9), where 0 < 8 < cc.

7.82. Let 1 < Y2 < -++ < ¥, be the order statistics of a random sample of
size n from the uniform distribution over the closed interval [~§,6] having pdf
Fe8) = (1/20)I1ep,5)()-

(a) Show that ¥] and ¥, are joint sufficient statistics for 8.
(b) Argue that the mle of 8 is § = max(-¥;, Yol

{c) Demonstrate that the mle § is a sufficient statistic for § and thus is a minimal
sufficient statistic for 8.

7.8.3. Let ¥, < ¥2 < -+ < ¥, be the order statistics of a random sample of size n
from a distribution with pdf

1 -

where —o0 < §1 < o0 and 0 < f; < oo. Find the joint minimal sufficient statistics
for %H and mu.

7.8.4. With random samples from each of the distributions given in Exercises
7.8.1(d), 7.8.2, and 7.8.3, define at least two ancillary statistics that are differ-
ent from the examples given in the text. These examples illustrate, respectively,
location invariant, scale invariant, and location and scale invariant statistics.

7.9 Sufficiency, Completeness and Independence

We have noted that if we have a sufficient statistic Y1 for a parameter 6, 4 € 2,
then h{z|y1), the conditional pdf of another statistic Z, given ¥; = y1, does not
depend upon 6. If, moreover, ¥ and Z are independent, the pdf go(z) of Z is
such that go(z) = h(zly.), and hence g2(z) must not depend upon # either. So the
independence of a statistic Z and the sufficient statistic ¥ for a parameter # means
that the distribution of Z does not depend upon ¢ € Q. That is, Z is an ancillary
statistic. ]

It is interesting to investigate a converse of that property. Suppose that the
distribution of an ancillary statistic Z does not depend upon §; then, are Z and
the sufficient statistic ¥7 for & independent? To begin our search for the answer, we
know that the joint pdf of ¥1 and Z is g1{y1; 8)A{2|y1), where gy (y1; ) and A{z|m)
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Example 7.9.4. Let Xy, X3, ..., X, denote 2 random sample mSE a distribution
that is N(61,8:), =00 < §1 < 00, 0 < 02 < co. In munmnmﬁ.Hm 7.7.2 it was @3.4&
that the mean X and the variance §? of the sample are joins complete sufficient
statistics for 8, and §.. Consider the stafistic

n—1

oK — X ‘
Z =t =ulX1, X2 1 Xn)

X=Xy

1

which satisfies the property that u(cz: +d,...,6%n + &mﬂ (X1, .+, %n). Thab is,
the ancillary statissic Z is independent of both X and 5% =

v

In this section we have given several examples which the complete mc..mw.embﬁ
statistics are independent of ancillary statistics. Thus-in those cases, the mboE.mQ )
statistics provide no information about the parameters. mogmoﬁﬂ if 5.5 mﬁmﬁ.wg
statistics are not complete, the ancillary statistics could provide some informoation
as the following example demonsirates. .

Example 7.9.5. We refer back to Examples 7.8.1 and 7.8.2. There the Srst and -

nth order statistics, ¥y and Y5, were minimal sufficient statistics for 0, where the. i

sample arose from an underlying distribution having pdf @wbmrrmiv (z). O@mb
Ty = (Y1 + ¥»,)/2 is used as an estimator of § as it is a function of those sufficient

statistics which is unbiased. Let us find a relationship between Ty and the ancillary : m "

statistic Ty = ¥, ~ ¥1.
The joint pdf of ¥1 and ¥4 is

gly1,ym; 8) =nln — Vgm — 3} /2%, §-1<p1 <t < g+1,

serc elsewhere. Accordingly, the joint pdf of Ty and % is, since the absolute value &
of the Jacobian equals 1, : o
n 2 to i

hitn,t:8) =n{n— 1573/2", §~1+5 <t <f+l-3, 0<t2<2

zero elsewhere. Thus the pdf of Th is
holte; 8) =n{n— 1532 ~12)/2% 0<22 <2,

zero elsewhere, which of course is free of & as T> is an ancillary statistic. Thus the
conditional pdf of Ty, given T2 = 12, is
2

i 12 2] .
575 m1H+MAﬁAm+H1 , 0<ta <2, .

i
-

.

By ja(tafte; €) =

zero elsewhere. Note that this is uniform on the wbdoﬁmp. (0 —1-+t2/2,0+1~12/2);
so the conditional mean and variaace of T} are, respectively,

(2= ta)? .

E(Tiftz) =6 and var(Ti|fe) = =73
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Given T, = g, we know something about the conditional variance of 7). In partie-
ular, if that observed value of Th Is large (close to 2), that variance is small and we
can place more reliance on the estimator T1. On the other hand, a small value of
ty means that we have less confidence in T} as an estimator of 8. It is extremely
interesting to note that this conditional variance does not depend upon the sample
size n but cnly on the given value of Th = t3. As the sample size increases, 1% tends
to becomes larger and, in those cases, T4 has smaller conditional variance. m

‘While Example 7.9.5 is a special one demonstrating mathematically that an
ancillary statistic can provide some help in point estimation, this does actually
happen in practice, too. For illustration, we know that if the sample size is large
enough, then
X-u
§/v/m
has an approximate standard normal distribution. Of course, if the sample arises
frorn a normal distribution, X and § are independent and T has a t-distribution with
n — 1 degrees of freedom. Even if the sample arises from a symmetric distribution,
X and § are uncorrelated and T has an approximate t-distribution and certainly an
approximate standard normal distribution with sample sizes around 30 or 40. On
the other hand, if the semple arises from a highly skewed distribution (say to the
right), then X and § are highly correlated and the probability P{—1.96 < T < 1.96)
is not necessarily close to 0.95 unless the sample size is extremely large (certainly
much greater than 30). Intuitively, one can understand why this correlation exists if
the underlying distzibution is highly skewed to the right. While § has a distribution
ree of 4 (and hence is an ancillary), a large value of S implies a large value of X,
since the underlying pdf is like the one depicted in Figure 7.9.1. Of couzse, a small
value of X (say less than the mode) requires a relatively small value of §. This
means that unless n is extremely large, it is risky to say that

T=

iH.wmm T 1.96s
Ve PR

provides an approximate 95 percent corfidence interval with data from a very skewed
distribution. As a matter of fact, the authors have seen situations in which this

confidence coefficient is closer to 30 percent, rather than 95 percent, with sample
sizes of 30 to 40.

E

EXERCISES

7.9.1, Let ¥1 < ¥, < Y3 < ¥y denote the order statistics of a random sample
of size n = 4 from a distribution having pdf flz;6) = 1/4, 0 < z < 4, =zero
elsewhere, where 0 < 8 < co. Argue that the complete sufficient statistic Yy for 8
is independent of each of the statistics ¥1/Y; and (¥1 +Y2)/(¥z + Ya).

Hint: Show that the pdf is of the form (1/9) f{z/6), where f(w) =1, 0 <w < 1,
zero elsewhere.
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%)

Figure 7.9.1: Graph of 2 Right Skewed Distribution; see also, Exercise 7.9.14

7.9.2. Let i < Y2 < --- < Y3, be the order statistics of 2 random sample WoB a
N(8,0%), —oo <8 < o0, Emdﬁ,uﬁsg Show that the distribution of Z = ¥, ~

does not depend upon §. Thus ¥ = MN. /n, & complete sufficient statistic for § is
1

independent of Z.

7.9.3. Let X1, X,..., X, be iid with the distribution N(§,0%), —co < § < oco.

Prove that a necessary and sufficient condition that the statistics Z = Mupwvb. and
. 1

n n
= M.)\uhs a complete sufficient statistic for §, are independent is that MUE == (L
1 1

7.9.4. Let X and ¥ be random variables such that E(X*) and E(Y*) # 0 exist
for k=1,2,3,.... If the ratic X/Y mﬁa w.m denominator ¥ are independent, prove
that BIX/Y)] = B(X®)/BYH), k=1,23,....

Hint: Write BE(XF) = mW;GQSﬁ

7.9.5. Let i < Ya < .-+ < ¥, be the order statistics of 2 random sample of size n

from a distribution that has pdf f{z;8) = (1/6)e~/%, 0 < z < 00, 0 < § < 00, zero
T

elsewhere. Show that the ratio R = nl1 Mﬁ. and its denominator (a complete

1
sufficient statistic for #) are independent. Use the result of the preceding exercise
to determine B{(R®), k=1,2,3,....

7.9.6. Let X1, Xo,...,Xs be iid with pdf f(z) = ™%, 0 < < co, zero elsewhere.
Show that (X1 + N&\ (X1 4 X2 +--- + Xs) and its denominator are independent.
Hint: The pdf f(z) is a member of {f(z;6) : 0 < & < oo}, where f(z;6) =
(1/8)e~=/%, 0 < & < oo, zero elsewhere.

7.9.7. Let ¥, ¥ ¥3 < --- < ¥, be the order statistics of a random sample m_.‘oﬁ ﬁum
normal distribution N (8,6}, ~o0 < 81 < o0, 0 < fz < oo. Show that the joint
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complete .m&mowmg statistics X = ¥ and S% for 6, and 8, are independent of each
of (¥ ~ ¥)/5 and (¥, ~ Y1)/,

7.9.8. Let ¥1 < Y5 < --- < ¥, be the order statistics of a random sample from a
distribution with the pdf

1 -8
Fasontn) = goexm (250,

01 < T < 0, zero elsewhere, where o0 < 81 < co, 0 < €z < co. Show that the
joint complete sufficient statistics ¥: and X = Y for for the parameters 61 and &,
™

are independent of (Va2 — ¥1} \Mﬁ\s ~Y1).
T

7.9.9. Let X3, Xs,...,Xs be a random sample of size n = 3 from the normal
distribution N(Q, 8).

(a) Argue that the ratio R = (X} + X3)/(X¥ +--- + X3) and its denominator
(X3 +---+ X2) are independent.

(b} Does 5R/2 have an F-distribution with 2 and 5 degrees of freedom? Explain
FOUT answer.

(¢) Compute E{R) using Exercise 7.9.4.
7.9.10. Referring to Example 7.9.5 of this section, determine ¢ so that
&Uﬁlc < —-8< O_R.w = ﬁuu = .95,

Use thds resulf to find a 95 percent confidence interval for 4, given Ty = #g; and
note how its length is smaller when the range of ¢» is larger.

7.9.11. Show that ¥ = | X iz a complete sufficient statistic for 8 > 0, where X has

the pdf fic (;8) =1/(28), for -8 < 5 < 8, zero elsewhere. Show that ¥ = [X] and
Z = sgn{X) are independent.

7.9.12. Let ¥1 <« ¥ < --- <Yy, be the order statistics of a random sample from a
N(8,0?) distribution, where o2 is fived but arbitrary. Then ¥ = X is a complete
sufficient statistic for §. Consider ancther estimator 7" of ¢, such as T = (¥; +
Ynt1-:)/2, fori=1,2,...,[n/2] or T could be any weighted average of these latter
statistics.

(a) Argue that 7' — X and X are independent random variables.
(b) Show that Var(T) = Var(X) + Var(T — X).

{c) Since we know the Ver{X) = o /n, it might be more efficient to estimate the
Var(T) by estimating the Var(T — X) by Monte Carlo methods rather than
doing that with Var(T") directly, because Var(T) = Var{T — X). This is often
called the Monte Carie Swindle.
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7.9.13. Suppose X1,Xs,..., X, is & random sample from a distribution with pdf
fla; 6) = (1/2)8%2%e%%, 0 < z < o0, zero elsewhere, where 0 < 8 < co:

(a) Find the mle, §, of §. Is § unbiased?
T
FHint: Find the pdf of ¥ == MU.VD. and then compute E(f).
- 1

{b) Argue that Y is a complete sufficient statistic for 4.
(c) Find the MVUE of 4.
(d} Skow that X1/Y and Y are independent.
(&) What is the distribution of X; /Y7
7.9.14. The pdf depicted in Figure w.m.w is given by
Fma (7} = €5(1 + mzte®)~(matl) Iom <z <o, (7.9.2)

where my > 0, (the pdf graphed is for my = 0.1). This is a member of a large faraily
of pdfs, log F-family, which are useful in survival (Jifetime} analysis; see Chapter 3
of Hettmansperger and McKean (1993).

{2) Let W be a rendom variable with pdf (7.9.2). Show that W == log ¥, where
Y has an F-distribution with 2 and 2mg degrees of freedom.

(b) Show that the pdf becomes the logistic (6.1.8) if my = 1.
{¢)} Consider the location model where
X;=04+W, i=1,...,n,

where W3, ..., W, are iid with pdf {7.9.2). Similar to the logistic location
model, the order statistics are minimal sufficient for this model. Show, similar
to Exaraple 6.1.4, that the mle of § exists.

Chapter 8

Optimal Tests of Hypotheses

8.1 Most Powerful Tests

In Section 5.5 we introduced the concept of hypotheses testing and followed it with
the introduction of likelihood ratio tests in Chapter 6. In this chapter we discuss
certain hest tests. -

We are interested in a random varieble X which hasg pdf or pmf f{z; ) where
? & . ‘We assumne that @ € wy or # € wy where wy and wy are subsets of © and
wo U wy ==§). We label the hypotheses as

Hy: @ €wyversus Hy : § € wn. {8.1.1)

The hypothesis Hy is referred to as the null hypothesis while Hy is referred to
as the alternative hypothesis. The test of Hy versus H; is based on a sample
X1,..., X, from the distribution of X. In this chapter we will often use the vector
X' = (X1,...,X,} to denote the random sample and x’ = (&y,...,%,) to denote
the values of the sample. Let & denote the support of the random sample X/ =
(Xy,..., Xn).

A test of Hy versus Hy is based on a subset ¢ of &, This set ¢ is called the
critical region and its corresponding decision rule is:

Reject Hy, {Accept Hy), #XeC {8.1.2)
Retain Hy, (Reject Hy), if X e (-

Note that a test is defined by its critical region. Conversely a critical region defines
a test.

Recall that the 2 x 2 decision table, Table 5.5.1, summarizes the results of the
hypothesis test in terms of the true state of nature. Besides the correct decisions,
two errors can occur. A Type I error occurs if Hy is rejected when it is true while a
Type Xl error cccurs if Hyp is accepted when Hj is true. The size or significance
level of the test is the probability of a Type I error, ie.,

a=maxPs(X & C). (8.1.3)
0wy

419
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(c) What is Rao’s score statistic?

6.3.16. Let X1,Xa,...,X, be a random sample from a Poisson distribution with
mean § > 0. Test Hy: 6 =2 against Hy ¢ § 5 2 using

(a) —2log A
(b) a Wald-type statistic.
~{¢) Rao’s score statistic.

6.3.17. Let X1, Xa,..., X, be a random sample from a I'(e, B)-distribution where
a is known and 8 > 0. Determine the likelihood ratio test for Hp : S = o against

Hy: B# B

6.3.18. Let ¥1 < Yz < -+ < ¥,, be the order statistics of a random sample from a
uniform distribution on (0,§), where § > 0.

{a) Show that A for testing Hp : @ = o against H; : B#BisA= Q\d\ﬂoU?“
Y, < B, and A =0, if ¥5 > fo.

(b) When Hp is true, show that —2logA hes an exact x2(2) distribution, not
. %3(1). Note that the regularity conditions are not satisfied.

6.4 Multiparameter Case: Estimation

In this section we discuss the case where 8 is a vector of p parameters. There
are analogs to the theorems in the previous sections in which @ is a scaler and we
present their results, but for the most part, without proofs. The interested reader
can find additional information in more advanced books; see, for instance, Lehmann
and Caselia (1998) and Rao (1973).

Let X1,...,Xn be iid with common pdf f(z;8), where 8 € 2 C RF. As before,
the likelihood function and its log are given by m,

g = JJf:8)
4=l

i(6)

i

log L(6) = WHom Flz:; 8), (6.4.1)
i=l S

for @ € . The theory requires additional regularity conditions which are listed
in the Appendix A, (A.1.1). In keeping with our number scheme in the last two
sections, we have labeled these (R6)-(R9). In this section of Chapter 6, when we say
wnder regularity conditions we mean all of the conditions of (6.1.1), (6.2.1), (6.2.2),
and (A.1.1) which are relevant to the argument. The discrete case follows in the
same way as the continuous case, $0 in general we will state material in terms of
the continuous case.

Note that the proof of Theorem 6.1.1 did not depend on whether the parameter
is & scalar or a vector. Therefore, with probability going to one, L(6) is maximized
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at the true value of 8. Hence, as an estimate of 8 we will consider the value which
maximizes L{#) or equivalently solves the vector equation {5/96)i(6) = 0. If it
exists this value will be called the mancimum likelihood estimator (mle) and we
will denote it by 8. Often we are interested in a function of 8, say, the parameter
1= g{@). Because the second part of the proof of Theorem 6.1.2 remains true for

-~

@ as a vector, 7 = g(#) is the mle of 7.

Example 6.4.1 Agmﬁnﬁnﬁﬂ Likelihood Estimates of the Normal pdf). Sup-
pose Xi,...,X, are iid N(u, o?). In this case, 0 = (u,o%) and  is the product
space (—occ, 00} % (0,00}, The log of the likelihood simplifies to
< i ki
, 2 B 1
.Hoc.,qui I.m. Hommalﬁﬁomqi .m:m.,m, ﬁaaitvm. 8.».8

L g

Taking partial derivatives of {6.4.2) with respect to u and ¢ and setting them to 0,
we gét the simultaneous equations,

Bl 1 &
2 - Z m-w=0
=1
8l n 1<
3 = 1M+MMM§EENHO.
. =1

Solving these equations, we obtain # = X and & = )\ (1/n) 300, (G~ X)* as
solutions. A &pmow of the second partials shows that these maximize I(g, ¢2), so
these are the mies. Also, by Theorem 6.1.2, (1/n} 3 7, (% — X)? is the mle of o2
‘We know from our discussion in Section 5.4, that these are consistent estimates of

1“0 m.aa &2, Hmmmmaﬁ?&ﬁ that [ is an unbiased estimate of u and that ¢2 is a biased
estimate of ¢ whose bias vanishes as n — o0, M

Example 6.4.2 (General Laplace pdf). Let X1, Xs,..., X, be arandom sample
from the Laplace péf fic(x) = (2b)! exp{~|z — a|/b}, —co < = < oo, where the
parameters (g, b} are in the space & = {{,5) : —cc < a < 00,b > 0}. Recall in the
last sections we looked at the special case where b = 1. As we now show, the mle
of g is the sample median, regardless of the value of b. The log of the likelihood
function is,

Ty — G

b

k]
l{a,b) = —-nlog 2 —nlog b— M

3=1

The partial of I{a,b) with respect to o is

Ol(a,b) 1+ m-a)] 1<
S ven Im.Mumm.pﬁ = HTHmMm@p.m.ﬁ.taT

i=1 d=xl

where the second equality follows because b 3> 0. Setting this partial to 0, we obtain
the mle of a to be Dwx“ med{Xy, Xa,..., Xn}, just as in Example 6.1.3. Hence, the
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In Example 8.3.1, in testing the equality of the means of two H.Hog& distribu-
tions, it was assumed that the unknown variances of the distributions were equal.
Let us now consider the problem of testing the equality of these two unknown
variances. :

Example 8.3.2. We are given the independent random samples Xi,..., X, and |

Yi,..., Y, from the distributions, which are N (81, §2) and N(82,04), respectively.
We have

€ == {{By, 00,82, 84) : =00 < 01,02 < 00,0 < 5,02 <00}
The hypothesis m.o : B = @, unspecified, with 6, and 82 also wospecified, is to be
tested against all alternatives. Then :

W= .ﬁﬁmwwmmqmmwmb T o0 < 01,0, < 00,0 <0 = 84 < 0&v

Tt is easy o show (see Exercise 8.3.8) that the statistic defined by A = L(&)/ L{)
is & function of the statistic

SO0~ R /n 1)
Fo 2 . (8.3.8)

k1cd

S -FPm~1)

b

If 05 = By, this statistic F' has an F-distribution with n—1 and m — 1 degrees of
freedom. The hypothesis that (81, 02,83, 64) € w is rejected if the computed F < €
or if the computed F' 2= cz. The constants ¢ and ¢z are usually selected so that, if
b3 = Oy, o

PF<a)=PFza)=5

where ¢ is the desired significance level of this test. m

Example 8.3.3. Let the independent random variables X and Y &%.m &.maacﬁﬁowm
that are N{61,63) and N(82,64). In Example 8.3.1 we derived the likelihood ratio
test statistic T of the hypothesis §; = 83 when f3 = 6,4, while in Example §.3.2
we obtained the likelihood ratio test statistic ' of the hypothesis 83 = 4. ,H_ﬂm
hypothesis that 81 = §a is rejected if the computed Tz e ﬂwmﬂ.w Smm constant ¢ is
selected so that ag = P{T| = ¢; 0y = #2,85 = 84} is the assigned mHm.E..momboo Hmdmw. of
ihe test. We shall show that, if 83 = 8, the likelihood ratio test statistics for equality
of variances and equality of means, respectively F' and T, are independent. b.ﬁ.nowm
other things, this means that if these two tests based on F and T, Hgﬁmﬁyﬁg
are performed sequentially with significance levels oy and ap, the probability of
accepting both these hypotheses, when they are true, is (1 - @1)(1 — a2). Thus the
significance level of this joiut test is @ = 1 — (1 — a1)(1 ~ az). )

Independence of F and T, when 83 = 04, can be mmﬁ@drmw&sg an appeal

. e owE =2
to sufficiency and completeness. The three statistics X, ¥, and Mﬁn — XY
1
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k3

MUG\& —Y)* are joint complete sufficient statistics for the three parameters 6y, 82

at

m.mﬁ 03 = 85. Obviously, the distribution of F does not depend upon 6y, 64, or
3 = 84, and hence F' is independent of the three joint complete sufficient statistics.
However, T' is a function of these three joint complete sufficient statistics alone,
and, accordingly, T is independent of F. It is important to note that these two
statistics are independent whether 01 = 8 or 6; =£ 8;. This permits us to calculate
probabilities other than sthe significance level of the test. For example, if 85 = 44
and @y =4 fa, then

Pler< F<ep, [TIZ26)=Pley < F<e)P(T| = ¢).

The second factor in the right-hand member is evaluated by using the probabilities
of a noncentral t-distribution. Of course, if §3 = 84 and the difference 8, — #» is
large, we would want the preceding probability to be close to 1-because the event

{e1 € F < ¢z, |T| = ¢} leads to a correct decision, namely, accept 6z = 8, and
reject 6y =Gy ® >

Remark 8.5.2. We caution the reader on this last test for the equality of two
variances. In Remark 8.3.1, we discussed that the one- and two-sample #-tests for
means are asymptotically correct, The two sample variance test of the last example
is not; see, for example, page 126 of Hettmansperger and McKean (1998). If the
underlying distributions are not normal then the F-critical values may be far from
valid critical values, (unlike the t-critical values for the means tests as discussed in
Remark 8.3.1). I = large simulation study Conover, Johnson and Johnson {1981)
showed that instead of having the nominal size'of o = 0.05, the F-test for variances
using the F-critical values could have significance levels as high as 0.8C, in certain
nonnormal situations. Thus, the two sample F-test for variances does not possess
robustness of validity. It should only be used in situations where the assumption of
normelity can be justified. See Exercise 8.3.14 for an Ulustrative dats set. m

In the above examples, we were able to determine the null distribution of the test
statistic. This is often Impossible in practice. As discussed in Chapter 6, though,
minus twice the log of the likelihood ratio test statistic is asymptotically %* under
Hyp. Hence, we can obtain an approximate test in most situations.

EXERCISES

3
8.3.1. In Exanple 8.3.1, suppose n = m = 8, T = 75.2, 7 = 786, 3 (@i = F)° =
1

B
71.2, MU@; - wvm = 54.8, If we use the test derived in that example, do we accept

1
or reject Hp : 61 = 63 at the 5 percent significance level? Obtain the p-value, see
Remark (5.6.1), of the test,

8.3.2. Verify Equations (8.3.3) of Example 8.3.1 of this section.
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and o? must be estimated, bus in this discussion, we assurme that they are known.
From theory we know that the probability is 0,987 that T is between
3o 3o
ﬁﬂﬁitlﬂ and qOHth..T.....(\dlﬁM.

These two values are called the lower (LCL) and upper {(UCL) control limits, respec-
tively. Sarmples like these are taken periodically resulting in a sequence of means,
say T1,Tg, Ta,.- .. These are usually plotted; and if they are between the LCL and
UCL, we say that the process is in control. If one falls cutside the limits, this would
suggest that the mean u has shifted, and the process would be investigated.

Tt was recognized by some that there could be a shift in the mean, say from
4 to u+ (o/+/A); and it would still be difficult to detect that shift with a single
sample mean for now the probability of a single ¥ exceeding UCL is only about
0.023. This means that we would reed about 1/0.023 =~ 43 samples, each of size n,
on the average before detecting such a shift. This seems too leng; so statisticians
recognized that they should be cumulating experience as the sequence Iy, %2, Eap.e.
is observed in order to help them detect the shift sooner. It is the practice to
compute the standardized variable Z = (X —u)/(&//n); thus we state the problem
in these terms and provide the solution given by a sequential probability ratio test.

Here Z is N(9,1), and we wish to test Hp : 8 = 0 against H, : § = 1 using the
sequence of iid random variables Z1, 22, ..., Zm,... We use m rather than n, as
the latter is the size of the samples taken periodically. We have .

Hﬁouguioﬁu T. M NW\N..Q .1 3 A ..
Thm) - eml=sim 12/ oF HM? -0.5)] .

Thus

k3
ko <exp |- (%—08) <k
g2zl

can be written as

™
h=~logh >3 (2—05} > ~loghk = ~h.
i=1

It is true that ~logko = logks when ¢ = S, Often, h = —loghky Is taken
to be about 4 or 5, suggesting that ae = G, is small, like 0.0L. As 3 (z ~ 0.5)
is curaulating the sum of 2 — 0.5, ¢ = 1,2,3,..., these procedures are often called
CUSUMS. If the CUSUM = 3(2;—0.5) exceeds b, we would investigate the process,
as it seems that the mean hes shifted upward. If this shift is to 8 = 1, the theory
associated with these procedures shows that we need only eight or nine samples on
the average, rather than 43, to detect this shift. For more icformation about these
methods, the reader is referred to one of the many books or quality improvement
through statistical methods. What we would like to emphasize here is that through
sequential methods {not only the sequential probability ratio test), we should take
advantage of all past experience that we can gather in making inferences.
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EXERCISES

8.4.1. Let X be N(0,6) and, in the notation of this section, let 8 = 4, 8" = 9,
a, = 0.05, and 5, = o.u.ow Show that the sequential probability ratio test can be

based upon the statistic Mumw Determine ¢o(n) and c1(n).
1

m..m?m. H.;.Wd X have a Poisson distribution with mean . Find the sequential proba-
bility ratio test for testing Hp : § = 0.02 against H : § = 0.07. Show that this test

car be based upon the statistic » _Xi. If @, = 0.20 and B, = 0.10, fnd o) and
1
OH?&.

8.4.3. Let the independent randorn variables ¥ and Z be N(uz,1) and N{us,1),
respectively. Let & = uy — pa. Let us observe independent observations from
each distribution, say ¥1,%2,... and 21, Z»,. ... To test sequentially the hypothesis
Hp: 9 =0 against Hy : 8 = , use the sequence X; = ¥; - 2, ¢ = 1,2,.... ¥
Qnﬁjlw Be. = (.05, show that the test can be based upon X =Y = Z. Find eo{n) and
[SEN

8.4.4. Suppose that a manufacturing process makes about 3 percent defective items,
which is considered satisfactory for this particular product. The managers would like
to decrease this to about 1 percent and clearly want to guard against a substantial
increase, say to 5 percent. To monitor the process, periodically n = 100 iterns are
taken and the number X of defectives counted. Assume that X is b(n = 100,p = 8).
Based on-a sequence X3, Xs,...,Xm,. .., determine 2 sequential probability ratio
test that tests Hy : 6 = 0.01 against Fy : § = 0.05. (Note that & == 0.03, the present
level, is in between these two values.) Write this test in the form

e
ko WM?&. —nd) > hy
f==]
and determine d, ho, and by if ag = G, = 0.02.

8.4.5. Let X, Xz, ..., X, be arandom sample from a distribution with pdf f(z;6) =
8z°~1, 0 < 2 < 1, zero elsewhere.

{a) Find a complete sufficient statistic for 4.
(k) M.me_ﬂ Ba = 15, find the sequential probability ratio test of Hy : § = 2 against
1:0= 3.
8.5 Minimax and Classification Procedures

éw. wm,mm considered several procedures which may be used in problems of point
mmﬁ.ﬁmﬁob. Among these were decision function procedures (in particular, minimax
decisions). In this section, we apply minimax procedures to the problem of testing a
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or, for brevity,
ez +by e (8.5.3)

That is, f this linear function of  and y in the left-hand member of inequality
(8.5.3) is less than or equal to a constant, Ve classify (z,y) as coming from the
bivariate normal distribution with means uf and pf. Ogmwﬁmmv we o?mmw@ {z,¥)
25 arising from the bivariate normal Qmﬁd&ﬁﬁoﬁ ﬁﬂw means u4 and ph. Of course,
if the prior probabilities can be assigred as discussed in Remark 8.5.1 then & and
thus ¢ can be found easily; see Exercise 8.5.3. =

Once the rule for classification is established, the statistician might be interested
in the two probabilities of misclassifications using thet rule. The frst of these two is
associated with the classification of (,y) as arising from the distribution indexed by
g if, in fact, it comes from that index by 4. The second misclassification is similar,
but with the interchange of ¢’ and 67, In the ﬁuonm&ﬁm example, the probabilities
of these respective misclassifications are

PaX +5Y < i ph) and PlaX +bY >¢uf, uh)-

The distribution of Z = aX + bY follows easily from Theorem 3.5.1, it follows
that the distribution of Z = aX + bY is given by,

Naps + bps, 6%0% + 20bporoe + b20%).

With this information, it is easy to compute the probabilities of misclassifications;
see Exercise 8.5.3.

One final remark must be made with respect to the use of the important classi-
fication rule established in Mxm,EEm 8.5.2. In most instances the parameter values
phyuh and w4y, pg as well as ¢},0%, and p are unknown. Ia such cases the statis-
tician has usually observed a random sample (frequently called a ?ﬁgﬁm MPSR&
from each of the two distributions. Let us say the samples have sizes n' and n”
respectively, with sample o,wmwmﬁmaﬁom“

7,7, () () end 37 (502 ()%

see Section 9.7 for the definiten of r. If in inequality (8.5.3) the parameters
sty il 1l 0%, o2, and poyes ave replaced by the unbiased estimates

oo B = P = D
(A ' +nt -2 ? w4+ nt -2 ’
(0 = D8, + (0 = L)rslsl)

§\+§: 2 ’

the resulting expression in the left-hand member is frequently called Fisher’s lin-
ear discriminant function. Since those parameters bave been estimated, the
distribution theory associated with aX -+ &Y does provide an approximation.

Although we have considered only bivariate distributions in this section, the
results can easily be extended to multivariate normal distributions using the results
of Section 3.5; see also, Chapter 6 of Seber (1984).
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EXERCISES

8.5. {H Let X, X5, ..., Xag be a random sample of size 20 from a distribution which
is N(6,5). Let L(#) represent the joint pdf of X1, Xz,..., Xoo. The problem is to
test Hp: 0 =1 against A1 : 6= 0. Thus Q= {8:4=0,1}.

(a) Show that L{1)/L(0) £ k is equivalent to T < ¢

{b) Find ¢ so that the significance level is & = 0.05. Compute the power of this
test if H; is true. -

() Ifthe loss function is such that £{1,1) = £(0,0) = 0 and £(1,0) = £(0,1) > 0,
wnn the MHEH_.EQ.av imax test. Fvaluate the power function of this test at the points
=1and 8=0.

8.5.2. Let Xy, Xa,...,X1p be a random sample of size 10Mrom a Poisson distribu-
tion with vm.ambpmﬂﬂ. 8. Let L(f) be the joint pdf of X1, Xs, ..., X10. The problem
15 to test Hy : mi against My 1 =1,

(a) Show that L(2)/L(1) £ k is equivalent to y = Maﬁ. >
1

(b) Hb. order to make e = 0.05, show that Hj is rejected if ¢ > 9 and, f y = 9,
reject Hy with probability W (using some auxiliary random experiment).

(c) ¥ ﬂwm loss function is such that £(3,5) = £(1,1) = 0 and £(,1) = 1 and
£(1,1) = 2 show that the minimax procedure is to reject H cm y > 6 and, if

y = mw reject Hp with probability 0.08 (using some auxiliary random experi-
ment).

8.5.3. In Example 8.5.2 et pf = up =0, pf =pf =L, 0 =1, 63 =1, and p= L.
{a) Find the distribution of the linear function aX + Y.

(b) AMHW WH 1, compute P(aX +bY < ¢y = ph = 0) and P(aX +5Y > &5 4 =
Ho = 1)

8.5.4. Determine Newton’s algorithm to find the mowﬁﬁou. of equation (8.5.2). If
software is available, write a program which performs 'your algorithm ard then show

that the solution is ¢ == 76.8. If software is not available, solve (8.5.2) by “rial and
error.”

8.5.5. Let X and Y have the joint pdf.

1
1 Ui 01, B2) = oo e
Flz,u; 61, 82) Smupéh ) mwv, b<a<oon, 0<y<oo,
7ero .&mm&pﬁmu where 0 < &, 0 < 8. An observation (z,y) arises from the joint
distribution with parameters equal to either (8] = 1,64 = 5) or (8 = 3,8§ = 2).
Determine the form of the classification rule.
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8.5.6. Let X and Y bave a joint bivariate normal distribution. An observation
(z,y) arises from the joint distribution with parameters equal to either

o= ph =0, (03 =(3) =1, /=3

Qr

M=il=1, G =4, (B)' =9, =

Show that the classification rule involves 2 second-degree polynomial in x and ¥.

8.5.7. Let W' = (W,,Ws) be an observation from one of two bivariate n.oan.H
distributions, I and I, each with p; = ps = 0 but with the respective variance-
covariance matrices )

10 i 3.0

How would you classify W into I or I1I?

Chapter 9

Inferences about ZO.H.E&
Models

9.1  Quadratic Forms

A homogeneous polynomial of degree 2 in n variables is called & guadratic form in
those variables. If both the variables and the coeficients are real, the form is called
a real quadratic form. Only real quadratic forms will be considered in this book.
To iilustrate, the form X7+ X, Xo + X3 is a quadratic form in the bwo varizbles X' 1
and Xp; the form X7+ X2 + X2 ~ 2X1 X, is a quadratic form in the three variables
Xy, Xo, and X3; but the form m.vmu. — Huw + (X2 !.Mvm B ;X.w |T;uh.m w2X) —4X3+51s
1ot quadratic form in X and X,, although it is a quadratic form in the variables
.MD. — 1 and ..N.m -2

Let X and 57 denote, respectively, the mean and the, variance of a random
sample X1, Xz,..., X, from an arbitrary distribution. Thus

(n-1)5° = W@?MmuMJ??ﬁ+§+...+wavu

n
1

n

|H o) )
—(Xi + X+ + X7)

2
!NGD..NW o XX b X1 X))

Is a quadratic form in the n variables X1, X5,..., X,. If the sarple arises from a
distribution that is N{u,o%), we know that the random variable (n—1)8%/0% is
x2(n — 1) regardless of the value of 4. This fact proved useful in our search for a
confidence interval for o2 when u is unknown.

It has been seen that tests of certain statistical hypotheses require a statistic
that is a quadratic form. For instance, Example 8.2.2 made use of the statistic

k3

Mk.m_ which js a quadratic form in the variables X, Xn,...,X,. Later in this
1

463




