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Bayesian Forecasting Methods for Short Time Series 
 

by  Enrique de Alba and Manuel Mendoza 
 

Preview 
 
This article by Enrique de Alba and Manuel Mendoza extends Foresight’s coverage of 
approaches to forecasting seasonal data from short historical series (less than 2-3 years of 
data.) The authors describe and illustrate a Bayesian method for modeling seasonal data and 
show that it can outperform traditional time series methods for short time series. 
 
  
 
Key Points 
 

• When you have seasonal data but too short a history to estimate a seasonal 

model, a Bayesian approach can be productive.  

• The Bayesian approach relies on proportions of partial-year to total-year 

figures and assumes that these proportions are stable from year to year. 

• We compare the Bayesian approach with that of a traditional model and find 

that the Bayesian approach is superior for short time series but inferior for 

lengthy time series. 

 
 
 

BACKGROUND 
 
FORESIGHT, spring 2007 (pp.11-25) includes a series of papers on the subject “Modeling 

Seasonality in Short Time Series.” These articles address the challenges of forecasting a 

time series known to be seasonal but having only a short history, i.e. few observations.  

 
The first paper, by Hyndman and Kostenko, examines the minimum sample size required to 

forecast with seasonal models based on regression, exponential smoothing, and ARIMA. 

The authors mention that Bayesian forecasting methods may be another alternative but they 

do not pursue it. 
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In the second paper, Michael Leonard shows how additional sources of information may be 

used to determine the seasonal properties of a short time series and presents a selection tree 

that can be used to determine an appropriate modeling approach. He does not mention 

Bayesian methods. 

 

Dan Williams follows with a shrinkage approach to measuring seasonality in small 

samples. However, he points out that these procedures require at least two to three years of 

data and sometimes much more. 

 

Finally, Philip Hans Franses considers changing seasonality. He points out that the simplest 

models assume constant seasonality and indicates that, where seasonality is evolving, it is 

necessary to have three or more decades of monthly or quarterly data in order to adequately 

fit a model. He concludes that you need lots of data to be able to confidently select an 

appropriate seasonal model. 

 

It comes as a surprise to us that Bayesian methods are barely mentioned in connection with 

this challenging problem. In his editorial preface to this section, Len Tashman states, 

“When the seasonal items to be forecast have short histories – certainly when there are less 

than 3 or 4 years of quarterly or monthly data - it is prudent to explore alternatives to the 

fitting of seasonal models directly to the data.” On this basis, it is worth noticing that 

Bayesian analysis is not only a possible alternative but a promising one, according to the 

many papers published on this approach.  

 

 
BAYESIAN FORECASTING 

 
Bayesian Statistics is not just another inference technique. It is a statistical theory with its 

own methods and techniques derived from a unique strategy for the solution of any 

inference problem. In fact, this strategy (maximizing expected utility) arises as a 

consequence of adopting a set of axioms.   
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A model is most often recognized as Bayesian when a probability distribution is used to 

describe uncertainty regarding the unknown parameters and when Bayes Theorem is 

applied. Bayes theorem is used to update a prior distribution (probabilities specified prior 

to data analysis) into a posterior distribution (the probabilities following data analysis) by 

incorporating the information, called likelihoods, provided by the observed data. A full 

Bayesian analysis can lead to the optimal choice among a set of alternative inferences, 

taking into account all sources of uncertainty in the problem and the consequences of every 

possible selection.  

 

For forecasting problems, Bayesian analysis generates point and interval forecasts by 

combining all the information and sources of uncertainty into a predictive distribution for 

the future values. It does so with a function that measures the loss to the forecaster that will 

result from a particular choice of forecasts.  

 
 

BAYESIAN ANALYSIS FOR A SEASONAL SERIES 
 
When forecasts are required for the year-end total of a short time series, the use of the 

yearly ratios of part-year totals to whole-year totals for previous years can play an 

important role.  A series can be said to have a stable seasonal pattern when the expected 

proportion of events that occur in a given fraction of the year is constant over time. Under 

this assumption, the whole-year total for the variable in question can be forecast, given a 

few (say two) years of data and the corresponding part-year figures (up to a given month) 

of the current year.     

 

To determine whether seasonality is stable, you can calculate for each year of history the 

cumulative proportion of the part-year total occurring through the current month. If 

seasonality is stable, then these yearly-to-date proportions should all be close to each other.  

 

When a short series is being analyzed, it is important to make use of the simplest possible 

models. Specifically, the number of unknown parameters must be kept at a minimum. 
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Binomial, normal and log-normal distributions have been considered in the literature for 

this purpose.  

 

When a Bayesian analysis is conducted, inferences about the unknown parameters are 

derived from the posterior distribution. This is a probability model which describes the 

knowledge gained after observing a set of data. The procedure to obtain the posterior 

distribution is known as Bayes Theorem (see Custer and Miller’s article in the Summer 

2007 issue of Foresight for an elementary discussion of this theorem).  

 

Bayes Theorem calculates the posterior distribution as proportional to the product of a prior 

distribution and the likelihood function. The prior distribution is a probability model 

describing the knowledge about the parameters before observing the currently available 

data. It can be elicited from past information or expert judgment. Alternatively, it can be 

chosen to represent a state of relative ignorance; in which case, the prior distribution is said 

to be neutral or noninformative and the resulting posterior distribution is mostly dependent 

on the observed data (see Migon and Gamerman, 1999, chapter 3 for an excellent 

discussion on prior distributions). Likelihood is simply the name given to the model applied 

to the data. For the problems discussed here, we can refer to Binomial, normal or log-

normal models. For short time series, it is quite important to let the scarce data available 

speak for themselves. As a consequence, prior distributions for the parameters must be 

noninformative.  

 

In our earlier paper (de Alba & Mendoza, 1996) these ideas were applied to an example 

based on the number of foreign tourists visiting Mexico. We used a binomial model and 

noniformative priors to forecast the whole-year total for 1991, given monthly data for 1989 

and 1990. For more information on our procedure, see the technical note at the end of the 

paper. 
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Table 1 shows the monthly data for the first 2 years while Figure 1 shows the cumulative 

part-year proportions corresponding to the number of tourists accumulated up to each 

month. They are close to each other; hence we have empirical evidence of the existence of 

a stable seasonal pattern. 

 

 

Figure 1 

Foreign Tourists Visiting Mexico
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Given a particular month, say January 1991, we used data from 1989 and 1990 to estimate 

the proportion p of tourists that visit Mexico every January. p is the proportion of tourist 

volume in January to the total number of tourists of the year. The inverse of this proportion 

(1/p) is used as an expansion factor which, when applied to the count in January 1991, with 

this model, leads to the forecast for the whole-year total in 1991:  

 

                                Forecast of 1991 total = January 1991 count  /  p 

 

By this procedure it is possible to obtain a forecast for the year total in 1991 from every 

month in that year, as the information becomes available. These forecasts for 1991 appear 

in Table 1. The true observed total of tourists for 1991 was 6374 (in thousands). 

 



 6

 
 

Table 1:  Observed and forecast tourist count (figures in thousands) 
 

1989 1990 1991 Total 

Jan 505 522 6168
Feb 494 539 6197
Mar 625 632 6349
Apr 466 532 6359
May 417 464 6489
Jun 455 518 6566
Jul 485 528 6607
Aug 518 527 6605
Sep 424 374 6544
Oct 466 451 6534
Nov 550 530 6511
Dec 893 769 6347
TOT 6298 6386 6347

Observed Forecast

 
 
 

COMPARISON OF BAYESIAN AND STANDARD PROCEDURES 
 

 
 
Here is a second example, one that we used (Mendoza & de Alba, 2006) to compare the 

Bayesian approach with a standard time series model (ARIMA). The data series Electricity 

measures the monthly average residential electricity usage in Iowa City from 1971–1978 

(Abraham & Ledolter, 1983). We held out 1978 to serve as the test period and used only 2 

years, 1976-77 to fit the models.  Table 2 shows the forecasts from  a Bayesian model for 

continuous variables which makes use of a lognormal distribution  for the likelihood, with a 

noninformative prior distribution. It also shows the forecasts and from a traditional time 

series (ARIMA) model.  
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Table 2.  Electricity Use in Iowa City (Kw/h): Comparison of Bayesian and ARIMA models 

using 2 Years of data 
 

  

Forecast of Year Total for 
1978 using data up to Current 

Month 
  Bayesian ARIMA 

Jan 6081 6203 
Feb 6025 6001 
Mar 6120 5516 
Apr 6092 5085 
May 6056 4928 
Jun 6001 5928 
Jul 6008 7275 
Aug 5966 6237 
Sep 6116 6809 
Oct 6178 6004 
Nov 6147 6044 
Dec 6118 6118 
TOTAL 6118 6118  
MSE 6183 431861  
MAE 62.80 488.28 
MAPE 1.03% 7.98% 

 
 

Each monthly figure in Table 2 is a forecast for 1978 as a whole based on data up through 

that month. Three accuracy metrics are reported at the bottom of the table – Mean Square 

Error (MSE), Mean Absolute Error (MAE), and Mean Absolute Percentage Error (MAPE). 

Note that the MAPE is slightly above 1%, indicating that the 12 Bayesian forecasts of the 

1978 total made from January through December differed from the actual 1978 figure by an 

average of about 1%. 

 

We also generated forecasts for the 1978 total using an ARIMA model. Two years of data 

is generally not sufficient for ARIMA to work well, even though the 24 months exceeds the 

requisite minimum of 16 months (Hyndman & Kostenko, 2007) for being able to obtain a 

fit. The forecast accuracy metrics in Table 2 reveal that  the ARIMA forecast errors  were 

substantially larger than those from the Bayesian model. For example, the MAPE is nearly 
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8 times greater.  We obtained similar results (not shown) using Winters’ exponential 

smoothing method.  

 
 
We repeated the comparison between the Bayesian and ARIMA models but using a longer 

time series; in this case 7 years of Electricity data (1971-1977) served as the historical data 

to forecast 1978. The results in Table 3 show that the traditional ARIMA model was 

superior for the lengthy time series, with a MAPE about one half that of the Bayesian 

model. With this lengthy series, ARIMA could adequately detect the underlying 

autocorrelations in the data.   

 

 
Table 3.  Electricity use in Iowa City (Kw/h): Comparison of Results Using 7 Years of  data. 

 
  

  

Forecast of Year Total for 
1978 using data up to 

Current Month 
  BAYESIAN ARIMA 

Jan 6242 6151 
Feb 6263 6158 
Mar 6283 6174 
Apr 6201 6134 
May 6099 6091 
Jun 6070 6088 
Jul 6091 6112 
Aug 6001 6028 
Sep 6084 6139 
Oct 6136 6153 
Nov 6116 6115 
Dec 6118 6118 
TOTAL 6118 6118 
MSE 8105 1588 
MAE 71.18 32.46 
MAPE 1.16% 0.53% 
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Note, however, that the Bayesian model used here was chosen because it is a very simple 

one and so suitable for short series. More sophisticated Bayesian models could have been 

developed for the longer time series.  

 
Our experience with other series bears out the results in Tables 2 and 3: traditional time 

series models such as ARIMA are better for long series while Bayesian forecasts 

outperform those in the case of the short series. So Bayesian procedures can be effective if 

only a small amount of past data is available. Our research also shows that the Bayesian 

forecasts perform well even in the presence of cycles and trends. A limitation of these 

models, however, is that they cannot be applied if there are negative values in the series.  

 
 

CONCLUSIONS 
 
When the time series is short, such as when only two years of monthly data are available, it 

is usually impossible to formally detect seasonal behavior in a given series. There are 

simply not enough observations to formally verify the seasonality (as through ARIMA 

models), even though the series is known to be seasonal. In this situation, Bayesian 

analyses can prove productive, provided we assume that the seasonality is stable. A simple, 

graphical test can be used to verify this assumption. So the Bayesian approach offers a 

useful alternative to deal with the problem of modeling seasonality in short time series. 
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