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Summary

The problem of making inferences about the ratio of two parameters has been addressed,

both from the frequentist and Bayesian perspectives, by many authors over the last fifty

years. Most of this work is concerned with the ratio of two normal means. In this paper, we

review the most relevant results regarding the Bayesian analysis of the nomal case as well as

some related, more general, problems.
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1 Introduction

The problem of making inferences about a quantity defined as the ratio of two unknown

parameters has been extensively discussed in the literature. In particular, the situation

where a statistical analysis is required for the ratio of two normal means has been

investigated for many years in the context of bioassay (see, for example, Bliss, 1935a,

1935b; Irwin, 1937; Fieller, 1944, 1954; Finney, 1947, 1965; Cox, 1985; Srivastava, 1986

and Kelly, 2000). The simplest version of this problem may be stated as follows.

Let X = (X1, . . . , Xn) and Y = (Y1, . . . , Ym) be two independent random samples

such that

Xi ∼ N(x|µ1, σ
2); i = 1, . . . , n

Yj ∼ N(y|µ2, σ
2); j = 1, . . . ,m

(1)

where both, µ1 and µ2, are unknown. Provided that µ2 6= 0, the aim of the analysis

is to produce inferences about the parameter φ = µ1/µ2 which describes the relative

magnitude of the means and, for certain types of bioassay, can be interpreted as the

relative potency of two different treatments.

In a similar way, there are other specific applications where inferences are more

adequate if expressed in terms of a ratio of means or some more general form of a

ratio-type parameter. This is the case, for example, of calibration and some linear

models (cf. Lindley and El-Sayyad, 1968).

In this paper, we firstly describe the frequentist results obtained where the objective

is to produce interval estimates for φ in (1). In Section 3, a Bayesian solution for this

basic model is reviewed and Section 4 is devoted to some extensions of the Bayesian

results to more general settings. Finally, some final remarks and future research topics

are included in Section 5.

2 Frequentist results

From a frequentist point of view, pointwise estimation of φ is rather straightforward. In

particular, maximum likelihood yields φ̂ = x̄/ȳ. On the other hand, if the objective is to

produce interval estimates for this parameter, the answer is not so clear. The standard

frequentist procedure is based on the celebrated Fieller’s formula (1944, 1954) which,

for this case (let us take σ = 1), is quite simple. Let us define an auxiliary random

variable U = X̄ − φȲ . Then, we have that
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h(φ) = U2

( 1

n
+φ2

m
)

(2)

follows a χ2
(1) distribution. h(φ) is known as the Fieller’s pivotal quantity and the

corresponding (1− α)× 100% confidence region for φ is given by

A = {φ ∈ IR | h(φ) ≤ χ2
(1)(1−α)}.

This confidence region can also be derived using very simple ideas of hypotheses

testing. Let us consider the hypotheses

H0 : φ = φ0 vs. H1 : φ 6= φ0 (3)

for model (1), reparametrized in terms of φ and µ2. The generalized likelihood-ratio

test leads to a rejection region for H0, given by

C = {(X,Y ) | Lp(φ0)/c(X,Y ) ≤ k} (4)

where c(X,Y ) involves only the observed data, and

Lp(φ0) = (2π)−(n+m)/2 exp (−
1

2
h(φ0))

is the corresponding profile likelihood. Thus, given (X,Y ), the hypothesis H0 : φ = φ0

will be accepted if and only if, as a function of φ0,

Lp(φ0) ≥ k∗ (5)

or equivalently,

h(φ0) ≤ c∗ (6)

for some constants k∗ and c∗. As a consequence, Fieller’s confidence region can be

interpreted as the set of values φ0 for which the hypothesis H0 : φ = φ0 is not rejected

at the appropriate significance level. In particular, a test of size α leads to a confidence

region of level (1 − α) × 100% and then, c∗ = χ2
(1)(1−α). At this point arises the

most remarkable characteristic of this procedure which has lead to a number of severe

criticisms: the (1 − α) quantile of a chi-square distribution goes to infinity as α → 0,

whereas h(φ) is a continuous, bounded function of φ, for any fixed set of data. In

particular, h(φ)→ h∗ as | φ |→ ∞ (a typical example is displayed in Figure 1, for the

case n = 1,m = 1, x = 1, y = 1).
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Figure 1: Fieller’s pivotal quantity h(φ)

As a consequence, we have that, for each sample (X,Y ), it always exists a value

α, strictly positive, such that (6) is true for every φ ∈ IR. In other words, it can

be proved that for every fixed set of data, the entire parameter space cannot reach

a 100% confidence level. From a conceptual point of view, this result is inadmissible.

Other minor problems are related to the fact that for some confidence levels, the region

is defined as the union of two disjoint intervals of infinite lenght. In practice, these

regions might be useless. In more general setting, Glesser and Hwang (1987) provide a

detailed discussion of the difficulties that the frequentist approach faces when dealing

with this class of problems.

It is interesting to notice that, despite these drawbacks, Fieller’s formula and some

generalizations of it are still widely used (see Raftery and Schweder, 1993, for an ex-

ample). In any case, recalling the equivalent condition (5), it might be useful to review

Fieller’s main problem in terms of the (profile) likelihood. For this transformation,

it happens that existence of a finite upper bound for h(φ) implies a strictly positive

lower bound for Lp(φ) (see Figure 2). In particular, Lp(φ) → m > 0, as | φ |→ ∞.

This behaviour of the tails, implies that this function cannot longer be interpreted as

a certain type of density for φ, as some non-Bayesian approaches suggest (see Sprott,

2000, for instance).

The idea of dealing with the likelihood function as a density for the parameter of

interest is not intrinsically inadequate. The frequentist difficulty in this problem arises

because of the existence of nuisance parameters (in this case, µ2).
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Figure 2: Profile likelihood funtion Lp(φ)

Many authors have recognized that methods of inference applicable to the likelihood

function which perform well in those cases where the parameter of interest is the

only unknown quantity, might fail if, due to the presence of nuisance parameters, the

full likelihood (in this case, L(φ, µ2)), is replaced by some transformation (the profile

likelihood Lp(φ), here).

In fact, a number of corrections have been proposed for the profile likelihood

(Kalbfleish and Sprott, 1970; Cox and Hinkley, 1974; Barndorff-Nielsen, 1986; Cox

and Ried, 1987; McCullagh and Tibshirani, 1990 are just some examples). It must be

said however, that in general terms these corrections are not intended to produce a

pseudo-density for the parameter of interest but to avoid other problems such as bias

and inconsistency. Nevertheless, it is interesting to see how some of these corrections

modify the tails of the profile likelihood for φ in this problem.

Let us consider, for example, the resulting adjusted profile likelihood Lap(φ) ob-

tained by Currie and Durbán (2000). These authors apply a procedure originally

proposed by McCullagh and Tibshirani (1990) to produce a profile likelihood associ-

ated to an unbiased, and information unbiased, score function. The resulting modified

likelihood is obtained as the product of the profile likelihood and a correction factor.

It can be shown that

Lap(φ) = Lp(φ)× [1 + 2 logLp(φ)
1+(X2+Y 2)

]−1/2
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where again,

lim|φ|→∞ Lap(φ) = m∗ > 0.

for some constant m∗. Therefore, and despite any other positive effects, it happens

that this adjusted profile likelihood does not improves the tail behaviour of Lp(φ).
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Figure 3: Adjusted likelihood function Lap(φ)

Another idea used to eliminate nuisance parameters is to integrate them out from

the full likelihood. This might be considered as a naive Bayesian procedure involving a

uniform prior distribution, even though it has been proposed by non-Bayesian authors

(see Kalbfleish and Sprott, 1970). In any case, the integrated likelihood for the problem

considered here, is given by

LUI(φ) =
∫
L(φ, µ2) dµ2

∝ Lp(φ)× (1 + φ2)−1/2

(7)

Again, in this case the resulting function is obtained as the product of the profile

likelihood and a correction factor. More interesting, this factor introduces a qualitative

change for the tails of the new likelihood (see Figure 4). Now, we have that LUI(φ)→ 0,

as | φ |→ ∞. Unfortunately, these tails do not decay fast enough to get a probabilty

model. In fact, it is clear from (7) that LUI(φ) behaves as φ
−1 when |φ |→ ∞.
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Figure 4: Integrated likelihood function LUI(φ)

A comprenhensive discussion of integrated likelihood methods as a tool for elimi-

nating nuisance parameters is provided by Berger et al. (1999).

3 The Bayesian approach for the basic model

Form purely algorithmic point of view, Bayesian analysis of model (1) is another like-

lihood method. In fact, for the production of interval estimates, the full likelihood is

replaced by posterior distribution of φ, which can be viewed as an integrated likelihood

where the weight function is no longer uniform but proportional to the joint prior

distribution for both parameters, φ and µ2. Thus,

P (φ | (X,Y )) ∝
∫
L(φ, µ2)P (φ, µ2) dµ2

∝ P (φ)×
∫
L(φ, µ2)P (µ2 | φ) dµ2.

This posterior distribution is a proper probability model not only when the prior

is proper but also for some cases where the initial information regarding the parame-

ters is described through an improper function. In particular, if the prior conditional

distribution for µ2, given φ, is uniform we get

P (φ | (X,Y )) ∝ P (φ)× LUI(φ)

∝ P (φ)× (1 + φ2)−1/2 × Lp(φ)

(8)
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so that, the marginal prior for φ multiplied by (1+φ2)−1/2 plays the role of a correction

factor for the profile likelihood. Obviously, if the marginal prior for φ is proper, the

resulting posterior is also proper. It must be noticed, however, that even under weaker

conditions this marginal prior leads to a proper probabilty model. That is the case,

for example, when P (φ) is improper but bounded with tails O(φ−1).
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Figure 5: Posterior distribution P (φ | (X,Y ))

This result is particularly interesting because, following Bernardo (1979), the joint

reference prior for φ and µ2, when φ is the parameter of interest, is given by

π(φ, µ2) = π(µ2 | φ)× π(φ)

∝ 1× (1 + φ2)−1/2

(9)

Therefore, even for the limiting case where the Bayesian approach assumes minimal

prior information the resulting posterior, which can be interpreted as a transformed

likelihood, results in a proper probabilty model for φ.

Model (1) can be generalized in several ways and some of these structures have

already been analyzed from a Bayesian perspective. In particular, scale parameter σ

can be unknown. This case has also been analized by Bernardo (1977), who derives

the reference prior for (φ, µ2, σ) when φ is again the parameter of interest. It must be

noticed that a reference analysis when σ is unknown requires sample data enough to

estimate this parameter.
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Specifically, the reference prior when n = m > 1 in (1) and the ordered groups (cf.

Berger and Bernardo, 1992) {φ} and {µ2, σ} are considered, can be written as

π(φ, µ2, σ) = π(µ2, σ | φ)× π(φ)

∝ π(µ2 | φ)× π(σ | φ)× (1 + φ2)−1/2

∝ 1× σ−2 × (1 + φ2)−1/2

so that, the corresponding posterior distribution for the parameter φ, applies the same

correction factor (1 + φ2)−1/2 as (8) to the integrated likelihood

Lw(φ) =
∫
L(φ, µ2, σ) σ

−2 dµ2 dσ

If, alternatively, reference prior is derived when the relative importance of the pa-

rameters is described with the ordered groups {φ}, {µ2} and {σ}, the result is

π(φ, µ2, σ) ∝ 1× σ−1 × (1 + φ2)−1/2

where only a change on the power of σ appears. Next section will review other, more

general, models where reference priors are used to produce inferences for a ratio-type

parameter. This analysis is particularly interesting if we accept that reference priors

seem to define the minimum weight function to be used as a correction factor leading

to proper probability models for these parameters.

4 Some generalizations

Let Y ∈ IRn be a random vector following a multivariate normal distribution with

mean vector Xθ and covariance matriz σ2I where X is a fixed (N × k), full rank

design matrix, θ ∈ IRk(k < N) is a vector of unknown coefficients and σ > 0 is also

unknown. For this linear regression setting, the parameter of interest is given by

φ = λt1θ/λ
t
2θ,

a ratio of two linear combinations of the regression coefficients. Here, λ1 and λ2 are

assumed to be fixed, linearly independent vectors in IRk such that λt2θ 6= 0. Clearly,

this structure includes, as a particular case, the ratio of normal means.
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Other problems that can be accomodated as specific instances of this model are:

slope ratio bioassay, parallel lines bioassay, switching regression regimes and calibration

(see Mendoza, 1987; 1990 and Gosh et al., 1995, for example). Anyway, a Bayesian

analysis for this model, has been provided by Mendoza (1988). There, results are

obtained for a class of prior distributions that includes Bernardo’s reference prior.

First, the model is reparametrized in terms of β = L θ, where L is a full rank k × k

matrix such that βi = λi θ ; 1 = 1, 2.. Thus, we have that

φ = β1/β2.

Then, reparametrizing the model in terms of φ, β2, ..., βk, σ
2 and since β2, ..., βk and

σ2 are nuisance parameters for this problem, the class of conditional priors

P (β2, ..., βk, σ | φ) ∝ σ−r,

where r is a positive constant, is proposed. This family includes different noninforma-

tive distributions. In addition, for the parameter of interest, a general prior P (φ) is

considered. Therefore, an approximation to prior bieliefs regarding all parameters is

given by

P (φ, β2, ..., βk, σ) ∝ P (φ) σ−r.

and the corresponding posterior is simply obtained as

P (φ, β2, ..., βk, σ | Y ) ∝ P (φ) σ−r L(φ, β2, ..., βk, σ)

∝ P (φ) σ−(N+r) exp [−(Y −Zβ)t(Y −Zβ)/(2σ2)]

with Z = XL−1 and βt = (φβ2, β2, ..., βk). Finally, integration provides the marginal

posterior for φ

P (φ | Y ) ∝ P (φ)× Lw(φ)

where the integrated likelihood is given by

Lw(φ) = {Q(φ)}−1/2 [ η + h(φ) ]−(N+r−k)/2

with Q(φ) a second degree polynomial with no real roots, η = N − k and h(φ) the

Fieller’s pivotal quantity for φ in this problem, for which all drawbacks discused in

Section 2 hold.

10



Again, since {Q(φ)}−1/2 has tails decaying to zero as φ−1, it is clear that the

posterior distribution for φ might or might not be a proper probability distribution

depending on the prior. In particular, if P (φ) is proper or, at least, has tails O(φ), the

posterior will be proper. Mendoza (1988) shows that the joint reference prior for this

problem, when φ is the parameter of interest, and the ordered groups considered are

{φ}, {β2, ..., βk} and {σ}, is given by

π(φ, β2, ..., βk, σ) ∝ {Q(φ)}−1/2 σ−k
(10)

so, that it belongs to the original class of priors with P (φ) = {Q(φ)}−1/2 and r = k,

generalizes Bernardo’s results and leads to the posterior

P (φ | Y ) ∝ {Q(φ)}−1 [ η + h(φ) ]−N/2

Therefore, the corresponding posterior is proper although it has no moments. In

any case, not only the correction factor is adquate to get a proper posterior but it has

the same structure as before, involving φ only through a second degree polynomial.

Another relevant generalization is due to Fernández and Steel (1998). These authors

deal with the situation where a random sample, of size n, is obtained from a location-

scale model

P (x | µ1, σ) = σ−1f{σ−1(x− µ1)},

where µ1 is a location parameter, σ > 0 is scale parameter and f(·) is known density

function. A second independent sample, of size m, is obtained from the model

P (x | µ2, σ) = σ−1g{σ−1(x− µ2)},

where µ2 plays a role similar to that of µ1 and g(·) is another density function. This

structure is a generalization of model (1) that not only removes the normality assump-

tion but does not require a common density for both samples nor existence of moments

for the models. It is a remarkable general setting. For this case it is shown that, if the

parameter of interest is φ = µ1/µ2, the ratio of location parameters, and the ordered

groups are defined as {φ}, {µ2} and {σ}, the joint reference prior is given by

π(φ, µ2, σ) ∝ {Q(φ)}−1/2 σ−1

where, as before, Q(φ) is a second degree polynomial. Moreover, if the corresponding

information matrix is block-diagonal and f(·) = g(·), then Q(φ) = (1 + φ)−1/2 exactly.
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More details concerning posterior distribution depend on the particular choice of

f(·) and g(·). For example, the authors report that, for the case where both densities

correspond to scale mixtures of normals, marginal posterior for φ is proper if an only

if n+m ≥ 3 and, as in previous cases, moments do not exist.

5 Concluding Remarks

The problem of making inferences about the ratio of two normal means is not only

of practical importance but has also concentrated the attention of the statisticians for

many years because of the difficulties associated with the use of the popular Fieller’s

pivotal quantity, when a frequentist analysis is conducted. These drawbacks are general

and appear in many other problems where inferences for a ratio-type parameter are

produced with this procedure. Fieller’s controversial features are related, in a way,

to the behaviour of the profile likelihood (and the uniform integrated likelihood) for

this class of problems. From a Bayesian point of view, reference analysis provides a

reasonable answer and it is interesting to notice that posterior densities can be directly

expressed, in many cases, in terms of the profile or the integrated likelihood. Even

more, prior densities act as a correction factor for the corresponding likelihood to get

proper posterior densities. For the case of the ratio of normal means, this correction

factor involves the parameter of interest only through a second order polynomial. This

fact, however, is not particular for this model. Some generalizations have shown that,

for example, this expression for the correction factor also appears if the parameter of

interest is the ratio of two linear combinations of the coefficients in a normal linear

model, a structure that includes many models where different parameters of this type

might be analized. The same fact occurs for the very general case of the ratio of

location parameters of two location-scale models. Even two different densities can be

involved and the correction factor has the same structure.

The crucial condition here seems to be that of having the same variance or, at

least, the same scale parameter. For the case of the ratio of normal means Mendoza

and Gutiérrez-Peña (1999) have shown that if the variances are not equal, one gets a

different result.

Other contribution which has explored other aspects of this problem is that of

Barbieri et al. (2000) where Bayes factors are computed for testing the hypotheses

H0 : φ = φ0 vs. H0 : φ 6= φ0 for model (1). They show that, in contrast with other

noninformative priors, reference priors provide an adequate solution to some robustness

and consistency problems.
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In any case, some other extensions may be possible when populations to be com-

pared have the same scale parameter. For example, this pattern could be studied for

the family of elliptical distributions and elliptical linear models (Arellano-Valle et al.,

2000) which are becoming increasingly popular.
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