
 1

MS 1319 
 
 
 

Decision Theory 
 

Mendoza, M. 
Dept. Statistics, ITAM 

Rio Hondo 1, San Angel. 
México 01000 D.F. MEXICO 

 
Gutiérrez-Peña, E. 

Dept. Probability and Statistics, IIMAS-UNAM, 
Ciudad Universitaria, México 01000 D.F. 

Apartado Postal 20-726, Admón. No. 20, MEXICO 
 
 
 
 
 
1. Introduction. 
 
1.1. The Process of Decision-making.  
One of the most common activities of human beings is that of decision-making. Every 
person is constantly deciding on a wide variety of different subjects. There are easy as well 
as difficult decisions; there are important and irrelevant decisions; one must face personal 
and professional decisions. In the end, we all know, from our particular experience, that 
there are good and bad decisions, so a natural question arises. Are there any rules or 
procedures for decision-making which “guarantee” that the final result is a “good” 
decision?  
 
A vast amount of effort has been devoted to explore this subject. Psychologists have 
studied how decision-makers work under different conditions. From a philosophical 
perspective, even the existence of such a thing as a “good decision” has been questioned. 
The logical approach has contributed to the understanding of the decision-making process. 
Mathematics, including Statistics, has played a major role in providing a formal structure 
for the process and defining criteria for optimality.  
 
Under the heading of Decision Theory, the literature offers an account of the ways people 
actually make decisions and a discussion on the mechanisms underlying this behavior. This 
is called a “descriptive” decision theory. On the other hand, we can also find discussions 
about the principles to consider to make rational decisions. In this case, we have a 
“normative” decision theory.  
 
In this article, we are concerned with a normative decision theory. We discuss the solution 
of a general class of decision problems and, briefly but not less importantly, comment on 
the relationship between Decision Theory and Statistical Inference. 
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1.2. Decision problems. 
A decision problem can be defined as a situation where a person or a group of people (the 
decision-maker) must select one and only one element (an action) from a given 
set },,,{ 21 kaaa K=A . The idea is to choose the “best” action, and thus the subjective nature 
of the solution arises naturally: The best action must be such for the specific decision-
maker. For this purpose, every action in A is judged in terms of the consequence it 
produces. Therefore, another component of the problem is the set of consequences 

},,,{ 21 kccc K=C  where ci stands for the consequence from action ai. If, for every action, 
the corresponding consequence is completely known and occurs every time the action is 
selected, then we have a decision problem without uncertainty.  
 
Under these circumstances, choosing an action is equivalent to choosing a consequence and 
the best action will be that leading to the best or “most preferable” consequence. Thus, the 
decision-maker must define the set of actions A, the set of consequences C, and must also 
express her personal subjective preferences among the different elements of C. Once this 
structure is defined, the problem is solved by choosing the action whose consequence is the 
most preferable. This seems to be a rather simple exercise; however, the importance of a 
careful definition of the problem cannot be overestimated. The set A must include all 
available actions, and these must represent actual alternative options.  
 
Concerning the principles we referred to in Section 1.1, in the case of a decision without 
uncertainty, these are implicit and apply to the decision-maker’s preferences. They assume 
all actions to be “comparable” in terms of preferences and the preference relation to be 
“transitive”. If the structure of the problem is not well-defined or the axioms (coherence 
principles) are not fulfilled, the decision-maker will solve (if at all) a wrong problem. 
 
If preferences are expressed in terms of a numerical score u such that, for every pair (i, j), ci 
is less preferable than cj if and only if u(ci) < u(cj), then the problem reduces to maximizing 
the function u over C. The score u is called the “utility function” and the solution is any 
action that maximizes the decision maker’s subjective utility. Sometimes it is easier to use a 
“loss function” to represent preferences. If l is a loss function, then ci is less preferable than 
cj if and only if l(ci) > l(cj). In this case, the best action minimizes the decision maker’s 
subjective loss. As long as both functions, loss and utility, describe the same preferences, 
the optimal decision remains the same. 
 
Decision problems without uncertainty are conceptually simple. Nevertheless, their solution 
can be difficult in practice. In particular, translation of preferences into a numerical score is 
not easy. However, the utility function is just a numerical representation of the preferences 
and thus these technical problems are usually due to the difficulties associated with the 
elicitation of preferences.  
 
Recalling the question “Are there any rules or procedures for decision-making which 
guarantee that the final result is a good decision?”, we can now say that, in the case of 
decision problems without uncertainty, if the problem is properly structured, the utility 
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function really reflects the decision-maker’s preferences, and these preferences obey the 
coherence principles, the answer is yes.  
 
Unfortunately, real world decision problems are usually more complex than those without 
uncertainty. It often happens that once an action has been chosen, there is a set of possible 
consequences associated with it. Among them, one and only one will take place depending 
upon the occurrence of some uncertain event. The structure of a decision problem “under 
uncertainty” is described in Section 2.1. 
 
 
1.3. Historical Background and Related Fields. 
Ideas related to decision theory can be traced back to at least the 18th century. However, 
most of the formal developments emerged during the past 80 years and many disciplines 
have contributed to the methods of decision-making. The case without uncertainty belongs 
to the domain of Optimization and Operations Research. Game Theory provided the basic 
framework for the case under uncertainty. Also, modern Economic Theory deals with 
interesting decisions, such as the choice of an investment portfolio. In fact, this problem is 
the origin of an entire field known as Financial Economics.  
 
The relationship between Statistics and Decision Theory deserves a special mention. 
Statistics can contribute to the solution of decision problems under uncertainty by means of 
methods which allow the decision maker to describe her own uncertainty. The result is 
known as Statistical Decision Theory, and different approaches to statistical inference have 
led to different statistical decision theories. Conversely, any situation where a statistical 
inference is required can be seen as a decision problem under uncertainty (an inference is 
just an assertion regarding the phenomenon of interest and is chosen among several 
alternatives). From this perspective, a Theory of Statistical Inference can be developed on 
the grounds of a specific Decision Theory. The most outstanding example is Bayesian 
Statistics, a statistical theory built upon the axiomatic decision theory described in Section 
2.3. Bayesian inference, as a theoretical discipline, and Bayesian methods, as a set of tools 
for inference in practice, have been growing very rapidly in recent years. 
 
Decision Theory is an interdisciplinary field with many relevant contributions published in 
Economics, Mathematics, Psychology and Statistics, among other areas. The basic concepts 
in Section 2.3 were mainly developed from the 1930’s to the 1970’s and now appear in a 
number of Bayesian Statistics texts. 
 
1.4. Decisions in Education. 
Decisions are omnipresent in the field of education. A specific syllabus must be chosen, 
among different alternatives, for each course. The admissions committee must decide 
whether or not an applicant should be accepted as a student of the program. As part of the 
grading process, for every exam, a cutoff value must be selected to decide whether a 
student fails. On the other hand, students face a decision problem when they choose a 
career; every time they select an elective course they are making a decision; when a student 
chooses an answer in a multiple response test, she is also deciding among a set of 
alternative options. These are only a few examples of decision problems in education. 
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For a long time, these problems were faced without any decision-theoretical backing. 
However, current research in education, specifically on test design, involves decision 
theory as a basic resource. As discussed by van der Linden (1991), this process is related to 
a change in the approach to design. Formerly, a test was considered as a measurement tool 
and research on tests was directed to explore the relation among the observed measurement 
and the attribute to be measured. More recently, it has been argued that the measurement is 
relevant insofar as it is useful to make decisions about the examinee. Therefore, an 
appropriate design must take into account the specific decision problem to be addressed. 
For examples of this idea we refer the reader to Novick and Lindley (1978), where some 
particular utility functions are used to identify cutoff scores; Sawyer (1996), who uses 
decision theory to validate course placement tests; and Vos (1999), where optimal 
sequential mastery tests are formulated using decision-theoretical arguments.  
 
 
 
 
2. Decision Theory. 
 
2.1. Definition of a Decision Problem. 
A decision problem under uncertainty is defined by the following elements: 
 
i)  },,,{ 21 kaaa K=A ,  
ii)  },,, ;;,,, ;,,,{ 212212211211 21 kkmkkmm EEEEEEEEE KKKK=E , and 
iii)  },,, ;;,,, ;,,,{ 212212211211 21 kkmkkmm ccccccccc KKKK=C . 
 
Here, A is an exhaustive and exclusive set of actions; E is the set of uncertain events where, 
for every action ai, the collection of events },,,{ 21 iimiii EEE K=E  is assumed to be a 
partition of the certain event Ω. Finally, C is the set of consequences and is such that, to 
each pair (ai, Eij), there corresponds a consequence cij. Both the space of actions and the set 
of uncertain events may contain an infinite number of elements.  
 
In order to solve this problem, the simple optimality principle used in Section 1.2. no longer 
applies. We cannot substitute the choice of an action by the choice of a consequence. In 
fact, in this new setting, once the decision-maker chooses ai, what she gets is the result of a 
“lottery” whose possible prizes are {u(ci1), …, u(cimi)} where u(cij) occurs with probability 
pij = P(Eij) and, for each i,  pi1 + pi2 + ⋅⋅⋅ + pimi = 1. Here, there is no obvious way to 
transfer a utility score to the action ai from the corresponding lottery. In fact, every method 
devised to solve a problem of this kind relies on a specific proposal of how to carry this out. 
Also, since the event Eij is uncertain for the decision maker, the probability pij is a measure 
of her personal beliefs about the occurrence of Eij. Thus, both utilities and probabilities are 
subjective. 
 
A number of methods have been proposed to solve decision problems under uncertainty; all 
of them replace the original problem with another which, in a way, “does not involve any 
uncertainty”. See Section 2.2. 
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Example. A Graduate Studies Committee must evaluate every application to a Ph.D. 
program and decide whether the corresponding candidate can be admitted. In a simplified 
version, only two actions are considered. Thus A = { a1, a2 }, where a1 = “admit the 
candidate”, a2 = “reject the candidate”. The consequences of each of these actions are 
uncertain. Rejection of a candidate would be appropriate if this action prevents admission 
of a bad student. On the other hand, it would be a mistake to reject a good student. If the set 
of uncertain events is defined as E = { E1, E2 }, with E1 = “candidate’s performance is 
good”, E2 = “candidate’s performance is poor”, then the consequences are given by C = { 
c11, c12, c21, c22 } where cij is the consequence obtained if the action ai is chosen and the 
uncertain event Ej occurs. Here, c11 and c22  represent good outcomes whereas c12 and c21 
are mistakes. A reasonable utility function describing these preferences must be such that 
u(cii) > u(cij) for i, j = 1,2. This problem has the structure described by Figure 1.  
 

<Figure 1 near here> 
 
2.2. Intuitive Solutions to a Decision Problem. 
Here, we review two popular methods used to solve a decision problem under uncertainty. 
As many others, each of them proceeds in a two-step fashion. First, for every action, a 
utility score is derived from the corresponding lottery. In the second step, actions are 
compared as they would be in a problem without uncertainty so the best action is chosen as 
that maximizing the derived utility.  
 
Minimax. For each action ai, this method looks at the worst possible consequence and then 
acts as if this consequence will occur for sure. In other words, Minimax assigns the utility  
uM(ai) = minj u(cij) and this new utility is then maximized over the space of actions, so that 
the best action, denoted by a*, is such that a* = maxi minj u(cij). The method is named after 
this last expression: Maximin, if we work in terms of utilities or Minimax if a loss function 
is used. This procedure completely ignores the probabilities that the decision-maker has 
assigned to the events in Ei. In some sense, this is a pessimistic approach to decision-
making and often yields to what is known as “opportunity loss”. 
 
Maximum expected utility. This method assigns, to each action ai, the weighted average of 
the utilities assigned to the corresponding consequences, the weights being the respective 
probabilities, i.e. uE(ai) = u(ci1) pi1 + u(ci2) pi2 + ⋅⋅⋅ u(cimi) pimi. This expected utility is then 
maximized over the space of actions, so that the best action, denoted by a*,  is such that a* 
= maxi uE(ai). This approach to decision-making takes into account all the information and is 
the only one that is consistent with the axiomatic theory described in the next section.  
 
Example (ctd.).  
Let p1 = P(E1) and p2 = P(E2). In this case, the expected utilities are computed as uE(a1) = 
u(c11) p1 + u(c12) p2 and  uE(a2) = u(c21) p1 + u(c22) p2, and the action leading to the larger of 
these two quantities is chosen. For the sake of simplicity, let us consider the case where the 
preferences are described by means of a loss function. Moreover, let us assume that 
consequences associated with successes are assigned a zero loss so that l(c11) = l(c22) = 0 
(with l(cij) > 0; i≠j). In this setting, lE(a1) = l(c12) p2, lE(a2) = l(c21) p1 and then a1 is chosen 
as the optimal action if, and only if,  l(c12) p2 <  l(c21) p1 or, equivalently,  p1 / p2  > l(c12) / 
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l(c21). Here, the cutoff value depends on the relative importance of c12 and c21. Note that, 
even if  p1 <  p2,  a1 will still be chosen as the best action if  p1 > (l(c12) / l(c21)) p2. 
 
2.3. Axiomatic Decision Theory. 
Coherence axioms can be formulated in several different ways. One of the most intuitive 
discussions concerning the axiomatic basis for decision theory appears in Lindley (1972). 
For a more technical version the reader is referred to Bernardo and Smith (1994). 
 
Let us represent an action a by 1 1{ | ,..., | }m ma c E c E= , thus indicating that an action is just a 
lottery where the decision-maker gets the consequence cj whenever the event Ej occurs. 
Then it is clear that any consequence c is a particular case of an action since c is equivalent 
to{ | }c Ω , where Ω  is the certain event.  
 
Axiom 1 (Comparability). For every pair of actions a1 and a2 in A, one and only one of the 
following conditions holds: 
     

a1 is less preferable than a2  (denoted 1 2a a< ) 
a1 is more preferable than a2  (denoted 1 2a a> ) 
a1 and a2 are equally preferable  (denoted  a1 ~ a2 ) 

 
Moreover, it is possible to find two consequences c* and *c  such that *

*c c>  and  
∗≤≤ ccc*   for any consequence c. ( a1 ≤ a2 means “a1 is not more preferable than a2”; a1 ≥ 

a2  is similarly defined.) 
 
Discussion. The comparability of actions implies both the comparability of consequences 
and the comparability of events. Denote by E  the complement of the event E and let 

*
1 1 * 1{ | , | }a c E c E=  and *

2 2 * 2{ | , | }a c E c E= . Then comparing a1 with a2 is equivalent to 
comparing the likelihoods of the events E1 and E2: a1 will be preferable to a2 if and only if 
E1 is more likely than E2. 
 
Axiom 2 (Transitivity). If 1 2a a>  and 2 3a a> , then 1 3a a> . 
 
Discussion. This axiom assumes that the set of actions can be ordered in such a way that a 
search for the most preferable element makes sense. 
 
Axiom 3 (Substitutability and dominance). If 1 2a a>  when the event E occurs and 1 2a a>  
when the event E  occurs, then 1 2a a> . 
 
Discussion. This axiom implies that, in any given action 1 1{ | ,..., | }m ma c E c E= , a 
consequence cj  can be replaced by any action which is equivalent to cj. This axiom also 
implies that, given two actions 1 11 1 1{ | ,..., | }m ma c E c E=  and 2 21 1 2{ | ,..., | }m ma c E c E= , if 

1 2j jc c≥  for all j, then 1 2a a≥ . Moreover, if 1 2j jc c>  for some  j, then 1 2a a> . 
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Axiom 4 (Reference events). The decision-maker can conceive of a procedure to generate a 
random point in the unit square such that, given two regions R1 and R2 in the unit square, 
the event that the random point is contained in R1 is regarded as more likely than the event 
that the random point is contained in R2 if, and only if, the area of R1 is larger than the area 
of R2. 
 
Discussion. This axiom defines a “unit of measurement” which can be used to describe the 
decision-maker’s uncertainty concerning the occurrence of the various events which are 
relevant for the decision problem. 
 
Axioms 1-3 are qualitative. They establish the rules that comparison of actions must obey. 
Axiom 4 is of a quantitative nature and allows the decision-maker to measure her degree of 
belief concerning uncertain events in terms of probability.  
 
The axioms imply a three-step procedure to choose among actions. First, all preferences 
between consequences must be quantified in terms of a numerical utility (or, alternatively, a 
loss) function. Second, the uncertainty regarding any event affecting the consequences of 
an action must be quantified in terms of probability. Finally, the decision-maker’s 
preferences about any pair of alternative actions must be described in units of expected 
utility and hence the best decision will be to choose the action that maximizes such 
expected utility.  
 
In brief, the main idea behind this formulation is this: if the coherence axioms are 
acceptable for a decision-maker, then she has no other option but to use the maximum 
expected utility criterion to choose among actions. Any other method leads to the same 
optimal decisions or conflicts with the axioms. Stating the axioms explicitly allows anyone 
to evaluate if she is willing to act as a coherent decision-maker defined in this particular 
way. In addition, if the axioms are adopted, the existence of a probability function for the 
uncertain events, and a utility function for the consequences, is no longer an assumption. It 
is a fact, following from the axioms themselves. 
 
This is a “subjective” method since the utility and probability functions, must describe the 
preferences and beliefs of the specific decision-maker. Interestingly, the subjective nature 
of the utility function has not been a matter of controversy. On the other hand, the idea of 
subjective probabilities led to a lively debate in the early years and even now appears as a 
relevant issue in some applications (see Schneider 2002, for an example). 
 
When the decision-maker is faced with new information concerning the uncertain events, 
her beliefs must be revised in order to obtain an updated (posterior) probability measure 
describing all the available knowledge (which includes the original, prior beliefs as well as 
the new information). Another important consequence of the axioms is that this updating 
must be consistent with Bayes’ rule. 
 
When dealing with decisions under uncertainty, one cannot guarantee that the optimal 
action is a good decision in the sense that it will necessarily lead to the best possible 
consequence. Apart from guaranteeing compliance with the coherence axioms, the 
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maximum expected utility method only leads to the action whose “expected” consequence 
is the most preferable.  
 
Example (ctd.). To improve the results of the admission process to the Ph.D. program, the 
Graduate Studies Committee can ask the candidates to take a selection exam. The 
corresponding grade of the exam (X) is then used to update the probabilities P(E1) and 
P(E2). If the observed grade is x, then the new probabilities are defined as  P(E1 | X = x ) 
and P(E2 | X = x ) and can be obtained via Bayes’ formula as    P(Ei | X = x ) = P( X = x | Ei ) 
P(Ei ) / P( X = x ); i =1,2. 
 
If these updated probabilities are used to make a decision, a1 must be chosen if, and only if,   
P( E1 | X = x ) / P( E2 | X = x ) > l(c12) / l(c21). Equivalently, a1 is the best action if P( X = x 
|E1 ) / P( X = x |E2 ) > (p2 / p1)(l(c12) / l(c21)). Here, statistical knowledge is useful to propose 
the models P( X = x |E1) and P( X = x |E2) describing how likely a grade is under each of the 
scenarios E1 and E2. The decision is thus based on the likelihood ratio  P( X = x |E1 ) / P( X 
= x |E2 ). In this case, the cutoff value depends on both the ratio of the probabilities p1 and 
p2 and the relative importance of the possible mistakes. An interesting issue closely related 
to this problem is that of the “test design”. If the classification exam is properly designed, it 
would be reasonable to expect high grades among those candidates who later prove to be 
good students and lower grades among bad ones. If the classification exam works well as a 
screening tool, the ratio P(X = x |E1) / P(X = x |E2) should be a nondecreasing function of x 
and then P(X = x |E1) / P(X = x |E2) will be larger than (p2 / p1)(l(c12) / l(c21) only if x is 
larger than a cutoff given by h((p2 / p1)(l(c12) / l(c21)) where the function h depends on how 
well the exam discriminates between good and bad candidates, a characteristic that can be 
analyzed through statistical methods. This “decision rule” leads to the expected result: 
candidates with a high grade are admitted whereas those with a low grade are rejected. The 
more subtle issue is related to the cutoff value. How high should a grade be for a candidate 
to be admitted? Under this decision-theoretical framework, it is clear that the best rule is 
not necessarily to admit a candidate only if she passes the exam. Depending on the 
combination of the “prior” probabilities p2 and p1, losses l(c12) and  l(c21), as well as on the 
function h, it might be optimal to admit some candidates who do not pass the exam or to 
reject some who pass the exam with a relatively low grade. This procedure proposes a 
solution for the choice of the cutoff value in a straightforward manner which makes it clear 
what the components of the problem are and how these should be taken into account. 
 
 
3. Some Applications. 
 
The literature offers a variety of applications of decision theory in education, mostly in the 
field of education research. In particular, van der Linden (1991,1997) provides a 
comprehensive review of applications to test theory. More recently, Vos (1999) and Vos 
and Glas (2000) propose a sequential decision procedure to develop adaptive mastery tests, 
whereas Segall (2004) applies ideas from decision theory to evaluate a new sharing item 
response theory model; see also van der Linden (1998). A common feature of these 
contributions (as well as many others of this type) is that the role of decision maker is 
played by the researcher, the instructor, or even the computer system used to administer the 
test.  
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From a different perspective, but also in the field of test design, Bernardo (1998) discusses 
several grading procedures for the case of multiple-choice examinations. There, the student, 
as the decision-maker, must devise a strategy to answer each item of the examination. In 
this context, however, the corresponding decision problem is defined by the instructor, who 
determines the set of possible answers A, the set of uncertain events E, the consequences set 
C, and, very importantly, the utility function (the grading score mechanism). If the student 
is a coherent decision-maker in the sense of Section 2.3, she must choose the answer 
maximizing her expected utility. This expectation is computed by combining the grading 
score function of the test and the subjective probability distribution describing the student’s 
knowledge. 
 
Bernardo shows how the utility function can be defined in order to discourage ‘guessing’. 
He also discusses the cases where the aim of the student is either to get the highest mark or 
just to pass the examination. In addition, and elaborating on an original idea by de Finetti 
(1965), he explores the results obtained when the student is asked not only to mark the 
correct option but to report her entire probability distribution over the set of possible 
answers for each item of the test.  
 
 
4. Current Developments. 
 
Decision Theory is an active field of research. The list of problems under current 
investigation include: experimental studies of individual and group behavior; use of 
different methods to understand human judgments and decisions; discussion of alternative 
normative models; and applications of the theory to a wide variety of subjects.  
 
Specifically, alternative sets of axioms are being explored to produce a structure able to 
encompass the widest range of real problems; Lipman (1999) and Dubois et al. (2003) are 
two examples of this type of investigation. Another line of research has to do with 
elicitation of both utilities and probabilities. Clemen and Reilly (1999) discuss the use of 
copulas for this purpose whereas Bleichrodt and Pinto (2000) explore a specific procedure 
in the context of medical decisions. In addition, for some decision problems maximization 
of the expected utility can only be accomplished through numerical or simulation methods 
(see Bielza et al. (1999), for instance). Beyond the limits of the theory described in this 
article, there are researchers who assume that consequences might include several facets, 
and preferences for each one of them are described through a different utility function. This 
framework is known as a multi-objective decision problem and there is no generally 
accepted solution in such a setting (see Dyer et al. (1992)). Another problem whose general 
solution is yet to be formulated is that of group decision. If the decision-maker is a 
committee where each member has a different utility function or a different probability 
distribution, how should these be combined to choose the action with the largest expected 
utility? Will this combination be an optimal solution in practice? Weerahandi and Zidek 
(1981) propose a solution for this problem; Hollenbeck et al. (1998) takes into account the 
structure of the group through multilevel theory. 
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Concerning Bayesian Statistics, the statistical ramification of Decision Theory, current 
research also includes alternative axiomatic formulations (see Karni (2007), for a recent 
example), elicitation techniques (Garthwaite et al., (2005)) and applications in an ever 
increasing number of fields. There is also a strong research effort directed towards 
statistical computing. Specifically, simulation techniques for the calculation of posterior 
distributions using Markov Chain Monte Carlo (MCMC) methods have been successfully 
employed over the last 15 years (Bhattacharya and  Haslett (2007) provide an example).  
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