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Abstract. We introduce a new method for building models of
CH, together with Π2 statements over H(ω2), by forcing. Unlike
other forcing constructions in the literature, our construction adds
new reals, although only ℵ1-many of them. Using this approach,
we build a model in which a very strong form of the negation of
Club Guessing at ω1 known as Measuring holds together with CH,
thereby answering a well-known question of Moore. This construc-
tion can be described as a finite-support weak forcing iteration
with side conditions consisting of suitable graphs of sets of models
with markers. The CH-preservation is accomplished through the
imposition of copying constraints on the information carried by the
condition, as dictated by the edges in the graph.

1. Introduction

The problem of building models of consequences, at the level of
H(ω2), of classical forcing axioms in the presence of the Continuum
Hypothesis (CH) has a long history, starting with Jensen’s landmark
result that Suslin’s Hypothesis is compatible with CH ([10]). Much of
the work in this area is due to Shelah (see [22]), with contributions also
by other people (see e.g. [2], [13], [19], [12], [6] or [20]). Most of the
work in the area done so far proceeds by showing that some suitable
countable support iteration whose iterands are proper forcing notions
not adding new reals fails to add new reals also at limit stages.

There are (nontrivial) limitations to what can be achieved in this
area. One conclusive example is the main result from [6], which high-
lights a strong global limitation: There is no model of CH satisfying a
certain mild large cardinal assumption and realizing all Π2 statements
over the structure H(ω2) that can be forced, using proper forcing, to
hold together with CH. In fact there are two Π2 statements over H(ω2),
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each of which can be forced, using proper forcing, to hold together
with CH—for one of them we need an inaccessible limit of measurable
cardinals—and whose conjunction implies 2ℵ0 = 2ℵ1 .

The above example is closely tied to the following well-known obsta-
cle to not adding reals, which appears in [11] (s. also [12]) and which
is more to the point in the context of this paper:1 Given a ladder
system ~C = (Cδ : δ ∈ Lim(ω1)) (i.e., each Cδ is a cofinal subset of

δ of order type ω), let Unif(~C) denote the statement that for every
colouring F : Lim(ω1) −→ {0, 1} there is a function G : ω1 −→ {0, 1}
with the property that for every δ ∈ Lim(ω1) there is some α < δ
such that G(ξ) = F (δ) for all ξ ∈ Cδ \ α (where, given an ordinal α,
Lim(α) is the set of limit ordinals below α). We say that G uniformizes

F on ~C. Given ~C and F as above there is a natural forcing notion,
let us call it Q ~C,F , for adding a uniformizing function for F on ~C
by initial segments. It takes a standard exercise to show that Q ~C,F

is proper, adds the intended uniformizing function, and does not add
reals. However, any long enough iteration of forcings of the form Q ~C,F ,

even with a fixed ~C, will necessarily add new reals. As a matter of
fact, the existence of a ladder system ~C for which Unif(~C) holds cannot
be forced together with CH in any way whatsoever, as this statement
actually implies 2ℵ0 = 2ℵ1 . The argument is well-known and may be
found for example in [11] and in [12].

In the present paper we distance ourselves from the tradition of ite-
rating forcing without adding reals and tackle the problem of building
interesting models of CH with an entirely different approach: starting
with a model of CH, we build a forcing which adds new reals,2 albeit
only ℵ1-many of them.

In [7], a framework for building finite support forcing iterations incor-
porating systems of countable models as side conditions was developed
(see also [3], [8], [9] for further elaborations). These iterations arise nat-
urally in, for example, situations in which one is interested in building a
forcing iteration of length κ (where κ is relatively long) which is proper
and which, in addition, does not collapse cardinals.3 Much of what we
will say in the next few paragraphs will probably make sense only to

1We will revisit this obstacle at Subsection 2.2 with the purpose of addressing the
following question: why do our methods work with the present application (forcing

Measuring) and not with the problem of forcing Unif(~C) (for any given ~C)?
2As it turns out, the construction resembles a classical finite support iteration,

and in fact it adds Cohen reals.
3For example if, as in [7], we want to force certain instances of the Proper Forcing

Axiom (PFA) together with 2ℵ0 = κ > ℵ2.
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readers with at least some familiarity with the framework as presented,
for example, in [7].

In the situations we are referring to here, one typically aims at a
construction which in fact has the ℵ2-chain condition, and in order
to achieve this goal it is natural to build the iteration in such a way
that conditions be of the form (F,∆), for F a (finitely supported) κ-
sequence of working parts, and with ∆ being a set of models with
markers, i.e., a set of ordered pairs (N, ρ), where N is a countable
elementary submodel of H(κ), possibly enhanced with some predicate
T ⊆ H(κ), and where ρ ∈ N ∩ κ. N is one of the models for which we
will try to ‘force’ each working part F (α), for every stage α ∈ N ∩ ρ,
to be generic for the generic extension of N up to that stage; thus, ρ
is to be seen as a ‘marker’ that tells us up to which point is N to be
seen as ‘active’ as a side condition.

In order for the construction to have the ℵ2-chain condition and be
proper, it is often necessary to start from a model of CH and require that
the domain of ∆ be a set of models with suitable symmetry properties.
We call (finite) sets of models having these properties T -symmetric
systems (for a fixed T ⊆ H(κ)). One of these properties, and the one on
which we will focus our attention in a moment, is the following: In a T -
symmetric system N , if N and N ′ are both in N and N ∩ω1 = N ′∩ω1,
then there is a (unique) isomorphism ΨN,N ′ between the structures
(N ;∈, T,N∩N) and (N ′;∈, T,N∩N ′) which, moreover, is the identity
on N ∩N ′.

At this point one could as well take a step back and analyse the
pure side condition forcing P0 by itself. This forcing P0, which we can
naturally see as the first stage of our construction, consists of all finite
T -symmetric systems of submodels, ordered by reverse inclusion. P0

first appeared in the literature in [24]. It is a relatively well-known fact,
and was noted in [9],4 that forcing with P0 adds Cohen reals, although
not too many; in fact it adds exactly ℵ1-many of them. This may be
somewhat surprising given that P0 adds, by finite approximations, a
new rather large object (a symmetric system covering all of H(κ)V ).5

The argument for this is contained in the proof of Lemma 3.16 from
the present paper, but it will nonetheless be convenient at this point
to sketch it here.

4See also [18].
5Incidentally, P0 is in fact strongly proper, and so each new real it adds is in

fact contained in an extension of V by some Cohen real. The preservation of CH
by P0 was exploited in [16].
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Let us assume, towards a contradiction, that CH holds and there is
a sequence (ṙν)ν<ω2 of P0-names which some condition N forces to be
distinct subsets of ω. Without loss of generality we may take each ṙν
to be a member of H(κ). For each ν we can pick Nν to be a sufficiently
correct countable model—meaning that (Nν ;∈, T ∗) 4 (H(κ);∈, T ∗)
for a suitably expressive predicate T ∗ ⊆ H(κ)—containing all relevant
objects, which in this case includesN and ṙν . As CH holds, we may find
distinct indices ν and ν ′ such that there is a unique isomorphism ΨNν ,Nν′

between the structures (Nν ;∈, T ∗,N , ṙν) and (Nν′ ;∈, T ∗,N , ṙν′) fixing
Nν ∩ Nν′ . But then N ∗ = N ∪ {Nν , Nν′} is a condition in P0 forcing
that ṙν = ṙν′ . The point is that if n ∈ ω and N ′ is any condition
extending N ∗ and forcing n ∈ ṙν , then N ′ is in fact compatible with
a condition M ∈ Nν forcing the same thing. This is true since N ∗
is an (Nν ,P0)-generic condition. But then ΨNν ,Nν′

(M) is a condition
forcing n ∈ ΨNν ,Nν′

(ṙν) = ṙν′ (since, by taking T ∗ expressive enough, we
may assume the forcing relation for P0 to be definable in (H(κ);∈, T ∗)
without parameters). Finally, if N ′′ is any common extension of N ′
and M, then N ′′ forces also that n ∈ ṙν′ , since it extends ΨNν ,Nν′

(M)
as ΨNν ,Nν′

(M) ⊆ N ′′ by the symmetry requirement.6

P0 has received some attention in the literature. For example, Todor-
čević proved that P0 adds a Kurepa tree (s. [18]). Also, [18] presents a
mild variant of P0 which not only preserves CH but actually forces ♦.

The iterations with symmetric systems of models as side conditions
that we were referring to before do not preserve CH, and in fact they
force 2ℵ0 = κ > ℵ1. The reason is of course that there are no symmetry
requirements on the working parts. Actually, even if the first stage of
the iterations—which is, essentially, P0—preserves CH, the iterations
are in fact designed to add new reals at all later (successor) stages.

Something one may naturally envision at this point is the possibility
to build a suitable forcing with systems of models (with markers) as
side conditions while strengthening the symmetry constraints, so as to
make them apply not only to the side condition part of the forcing but
also to the working parts; one would hope to exploit the above idea
in order to show that the forcing thus constructed preserves CH, and
would of course like to be able to do that while at the same time forcing
some interesting statement. In the present paper we implement this
idea by proving that a very strong form of the failure of Club Guessing

6It is worth noticing the resemblance of this argument with Shelah’s argument
for showing that CH gets preserved by the limit of any countable support iteration
of length less than ω2 of proper forcings of size at most ℵ1 (s. e.g. the proof of [1,
Theorem 2.10].)
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at ω1 known as Measuring (see [12]) that follows from PFA can be forced
adding new reals while, nevertheless, preserving CH.

Definition 1.1. Measuring holds if and only if for every sequence ~C =
(Cδ : δ ∈ ω1), if each Cδ is a closed subset of δ in the order topology,
then there is a club C ⊆ ω1 such that for every δ ∈ C there is some
α < δ such that either

• (C ∩ δ) \ α ⊆ Cδ, or
• (C \ α) ∩ Cδ = ∅.

In the above definition, we say that C measures ~C. Measuring is of
course equivalent to its restriction to club-sequences ~C on ω1, i.e., to
sequences of the form ~C = (Cδ : δ ∈ Lim(ω1)), where each Cδ is a club
of δ. It is also not difficult to see that Measuring can be rephrased as
the assertion that the algebra P(ω1)/NSω1—where NSω1 denotes the
nonstationary ideal on ω1—forces that CVω1

is a base for an ultrafilter
on the Boolean subalgebra of P(ωV1 ) generated by the closed sets as
computed in the generic ultrapower M = V/Ġ, where CVω1

denotes the
club filter on ω1 in V .

A partial order P is ℵ2-Knaster if for every sequence (qξ : ξ < ω2)
of P-conditions there is a set I ⊆ ω2 of cardinality ℵ2 such that qξ and
qξ′ are compatible for all ξ, ξ′ ∈ I. Of course, every ℵ2-Knaster partial
order has the ℵ2-chain condition.

Our main theorem is the following.

Theorem 1.2. (CH) Let κ ≥ ω2 be a regular cardinal such that 2<κ =
κ. Then there is a partial order P ⊆ H(κ) with the following properties.

(1) P is proper.
(2) P is ℵ2-Knaster.
(3) P forces the following statements.

(a) Measuring
(b) CH
(c) 2ℵ1 = κ

Theorem 1.2 answers a question of Moore, who asked if Measuring
is compatible with CH (see [12] or [21]). The relative consistency of
Measuring with CH has also been obtained recently by Golshani and
Shelah in [15], where they have actually shown that every countable
support iteration of the natural proper posets for adding a club of ω1

measuring a given club-sequence by countable approximations fails to
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add new reals.7 Prior to [15], the strongest failures of Club Guessing
at ω1 known to be within reach of the forcing iteration methods for
producing models of CH without adding new reals (s. [23]) were only in
the region of the negation of weak Club Guessing at ω1, ¬WCG, which
is the statement that for every ladder system (Cδ : δ ∈ Lim(ω1)) there
is a club C ⊆ ω1 having finite intersection with each Cδ.

8 Moore,
upon learning about an earlier version of Theorem 1.2, asked whether
Measuring implies that there are non-constructible reals. This question
was aimed at addressing the issue whether or not adding new reals is
a necessary feature of any successful approach to forcing Measuring +
CH, and it obtains a negative answer by the Golshani-Shelah result.

Our construction is a sequence 〈Pβ : β ≤ κ〉 which is not a forcing
iteration, in the usual sense of Pα being a complete suborder of Pβ for
all α < β ≤ κ, but which nevertheless has a sufficiently nice property; it
is what we will refer to as a weak forcing iteration. This means that for
all α < β, every Pα-condition is a Pβ-condition, for all p0, p1 ∈ Pα, if
p1 ≤Pα p0, then p1 ≤Pβ p0,9 and, moreover, every predense subset of Pα
is also predense in Pβ. Using this piece of terminology, our construction
can be roughly described as a finitely supported weak forcing iteration
〈Pβ : β ≤ κ〉 in which conditions come together with a side condition
consisting of a graph of edges {(N0, ρ0), (N1, ρ1)}, where each (Ni, ρi)
is a model with markers, with suitable structural properties. Given
any such edge {(N0, ρ0), (N1, ρ1)}, N0

∼= N1. Furthermore, all the
information carried by the condition—including both its working part
and its side condition—contained in N0 and attached to any α ∈ N0∩ρ0

such that ΨN0,N1(α) < ρ1 (where ΨN0,N1 is the unique isomorphism
between (N0;∈) and (N1;∈)) is to be copied over into N1 by ΨN0,N1 .
This copying will be crucially used in the proof of CH-preservation10

and also in other parts of the proof of Theorem 1.2 (most notably
in the proof of the ℵ2-chain condition). The working part consists of
conditions for natural forcing notions adding instances of Measuring.

7It is straightforward to see that these natural forcings for adding a given instance
of Measuring do not add reals; however, before [15] it was not known whether their
countable support iterations also (consistently) have this property.

8Measuring implies ¬WCG. To see this, suppose (Cδ : δ ∈ Lim(ω1)) is a ladder
system and D ⊆ ω1 is a club measuring it. Then every limit point δ ∈ D of limit
points of D is such that D ∩Cδ is bounded in δ since no tail of D ∩ δ can possibly
be contained in Cδ as Cδ has order type only ω.

9Although it not be the case that if p1 ≤Pβ p0, then p1 ≤Pα p0. In other words,

Pα need not be a suborder of Pβ .
10See also [4] for another forcing construction using edges in order to preserve

GCH.



Few new reals 7

Rather than delving into more details here, we direct the reader to
the actual construction in Section 2.

1.1. Some observations on extensions of Measuring. We conclude
this introduction by briefly considering some extensions of Measuring.

It is immediate to see that Measuring is equivalent to the statement
that if (Cδ : δ ∈ Lim(ω1)) is such that each Cδ is a countable collection
of closed subsets of δ, then there is a club of ω1 measuring all mem-
bers of Cδ for each δ. We may thus consider the following family of
strengthenings of Measuring.

Definition 1.3. Given a cardinal κ, Measκ holds if and only if for every
family C consisting of closed subsets of ω1 and such that |C| ≤ κ there
is a club C ⊆ ω1 with the property that for every D ∈ C and every
δ ∈ C there is some α < δ such that either

• (C ∩ δ) \ α ⊆ D, or
• ((C ∩ δ) \ α) ∩D = ∅.

Measℵ0 is trivially true in ZFC. Also, it is clear that Measκ implies
Measλ whenever λ < κ, and that Measℵ1 implies Measuring.

Recall that the splitting number, s, is the minimal cardinality of
a splitting family, i.e., of a collection X ⊆ [ω]ℵ0 such that for every
Y ∈ [ω]ℵ0 there is some X ∈ X such that X ∩ Y and Y \X are both
infinite.

In the proof of Fact 1.4, if (Cδ : δ ∈ Lim(ω1)) is a ladder system on
ω1, we write (Cδ(n))n<ω to denote the strictly increasing enumeration
of Cδ. Also, [α, β) = {ξ ∈ Ord : α ≤ ξ < β} for all ordinals α ≤ β.

Fact 1.4. Meass is false.

Proof. Let X ⊆ [ω]ℵ0 be a splitting family. Let (Cδ)δ∈Lim(ω) be a ladder
system on ω1 such that Cδ(n) is a successor ordinal for each δ ∈ Lim(ω1)
and n < ω, and let C be the collection of all sets of the form

ZX
δ =

⋃
{[Cδ(n), Cδ(n+ 1)) : n ∈ X} ∪ {δ}

for some δ ∈ Lim(ω1) and X ∈ X . Let D be a club of ω1, let δ < ω1

be a limit point of D, and let

Y = {n < ω : [Cδ(n), Cδ(n+ 1)) ∩D 6= ∅}

Let X ∈ X be such that X ∩ Y and Y \X are infinite. Then ZX
δ ∩D

and D \ ZX
δ are both cofinal in δ. Hence, D does not measure C. �

The following is proved in joint work of the first author with John
Krueger.
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Theorem 1.5. ([5]) Measℵ1 can be forced over any model of ZFC and
follows from BPFA.

Another natural way to strengthen Measuring is to allow, in the se-
quence to be measured, not just closed sets, but also sets of higher
complexity (from a descriptive set-theoretic point of view). The version

of Measuring where one considers sequences ~X = (Xδ : δ ∈ Lim(ω1)),
with each Xδ an open subset of δ in the order topology, is of course
equivalent to Measuring. A natural next step would therefore be to
consider sequences in which each Xδ is a countable union of closed
sets. This is of course the same as allowing each Xδ to be an arbitrary
subset of δ. Let us call the corresponding statement Measuring∗:

Definition 1.6. Measuring∗ holds if and only if for every sequence
~X = (Xδ : δ ∈ Lim(ω1)), if Xδ ⊆ δ for all δ, then there is some club
C ⊆ ω1 such that for every δ ∈ C, a tail of C ∩ δ is either contained in
or disjoint from Xδ.

It is easy to see that Measuring∗ is false in ZFC. As a matter of fact,
given a stationary and co-stationary S ⊆ ω1, there is no club of ω1

measuring ~X = (S ∩ δ : δ ∈ Lim(ω1)). In fact, if C is any club of ω1,
then both C ∩ S ∩ δ and (C ∩ δ) \ S are cofinal subsets of δ for each δ
in the club of limit points in ω1 of both C ∩ S and C \ S.

The status of Measuring∗ is more interesting in the absence of the Ax-
iom of Choice. Let Cω1 = {X ⊆ ω1 : C ⊆ X for some club C of ω1}.

Observation 1.1. (ZF+ Cω1 is a normal filter on ω1) Suppose ~X =
(Xδ : δ ∈ Lim(ω1)) is such that

(1) Xδ ⊆ δ for each δ.
(2) For each club C ⊆ ω1,

(a) there is some δ ∈ C such that C ∩Xδ 6= ∅, and
(b) there is some δ ∈ C such that (C ∩ δ) \Xδ 6= ∅.

Then there is a stationary and co-stationary subset of ω1 definable
from ~X.

Proof. We have two possible cases. The first case is when for all α < ω1,
either

• W 0
α = {δ < ω1 : α /∈ Xδ} is in Cω1 , or

• W 1
α = {δ < ω1 : α ∈ Xδ} is in Cω1 .

For each α < ω1 let Wα be W ε
α for the unique ε ∈ {0, 1} such that

W ε
α ∈ Cω1 , and let W ∗ = ∆α<ω1Wα ∈ Cω1 . Then Xδ0 = Xδ1 ∩ δ0 for all

δ0 < δ1 in W ∗. It then follows, by (2), that S =
⋃
δ∈W ∗ Xδ, which of

course is definable from ~X, is a stationary and co-stationary subset of
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ω1. Indeed, suppose C ⊆ ω1 is a club, and let us fix a club D ⊆ W ∗.
There is then some δ ∈ C ∩ D and some α ∈ C ∩ D ∩ Xδ. But then
α ∈ S since δ ∈ W ∗ and α ∈ W ∗ ∩Xδ. There is also some δ ∈ C ∩D
and some α ∈ C ∩ D such that α /∈ Xδ, which implies that α /∈ S
by a symmetrical argument, using the fact that Xδ0 = Xδ1 ∩ δ0 for all
δ0 < δ1 in W ∗.

The second possible case is that in which there is some α < ω1 with
the property that both W 0

α and W 1
α are stationary subsets of ω1. But

now we can let S be W 0
α, where α is first such that W 0

α is stationary
and co-stationary. �

It is worth comparing the above observation with Solovay’s classic
result that an ω1-sequence of pairwise disjoint stationary subsets of ω1

is definable from any given ladder system on ω1 (working in the same
theory).

Corollary 1.7. (ZF+ Cω1 is a normal filter on ω1) The following are
equivalent.

(1) Cω1 is an ultrafilter on ω1.
(2) Measuring∗

(3) For every sequence (Xδ : δ ∈ Lim(ω1)), if Xδ ⊆ δ for each δ,
then there is a club C ⊆ ω1 such that either
• C ∩ δ ⊆ Xδ for every δ ∈ C, or
• C ∩Xδ = ∅ for every δ ∈ C.

Proof. (3) trivially implies (2), and by the observation (1) implies (3).
Finally, to see that (2) implies (1), note that the argument right after
the definition of Measuring∗ uses only ZF together with the regularity
of ω1 and the negation of (1). �

In particular, the strong form of Measuring∗ given by (3) in the above
observation follows from ZF together with the Axiom of Determinacy.

Much of the notation used in this paper follows the standards set
forth in [14] and [17]. Other, less standard, pieces of notation will be
introduced as needed. The rest of the paper is structured as follows.
In Section 2 we construct a sequence (Pβ : β ≤ κ) of forcing notions.
In Section 3 we prove the relevant facts about this construction which
will show Pκ to witness the conclusion of Theorem 1.2. Subsection 3.4
contains some remarks on why our construction in Section 2 cannot
possibly be adapted to force Unif(~C) for any ladder system ~C (which, as
we already mentioned, is well-known to be incompatible with CH), and
on the (closely related) obstacles towards building models of reasonable
forcing axioms together with CH using the present approach.
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2. The main construction

The theorem we will prove in this and the next section, we recall, is
the following.

Theorem 2.1. (CH) Let κ ≥ ω2 be a regular cardinal such that 2<κ =
κ. Then there is a partial order P ⊆ H(ω2) with the following proper-
ties.

(1) P is proper.
(2) P is ℵ2-Knaster.
(3) P forces the following statements.

(a) Measuring
(b) CH
(c) 2ℵ1 = κ

In this section we present the construction of a certain sequence
(Pβ : β ≤ κ) of forcing notions. In Section 3 we will prove that Pκ is
a forcing P witnessing the conclusion of Theorem 2.1.

We start out by fixing some pieces of notation that will be used in
both this and the next section. If N is a set such that N ∩ω1 ∈ ω1, δN
denotes this intersection. δN is also called the height of N .

Given P ⊆ H(κ) and N ⊆ H(κ), we will tend to write (N,P )
as short-hand for (N,P ∩ N). Also, if N0 and N1 are ∈-isomorphic
elementary submodels of H(κ), we refer to the unique ∈-isomorphism
Ψ : (N0;∈)→ (N1;∈) as ΨN0,N1 .

We will make use of the following notion of symmetric system from
[7].

Definition 2.2. Let T ⊆ H(κ) and let N be a finite collection of
countable subsets of H(κ). We say that N is a T -symmetric system if
and only if the following holds.

(1) For every N ∈ N , (N ;∈, T ) is an elementary substructure of
(H(κ);∈, T ).

(2) Given N0 and N1 in N , if δN0 = δN1 , then there is a unique
isomorphism

ΨN0,N1 : (N0;∈, T ) −→ (N1;∈, T )

Furthermore, ΨN0,N1 is the identity on N0 ∩N1.
(3) For all N0, N1, M ∈ N , if M ∈ N0 and δN0 = δN1 , then

ΨN0,N1(M) ∈ N .
(4) For all N and M in N , if δM < δN , then there is N ′ ∈ N such

that δN ′ = δN and M ∈ N ′.
Taking up a suggestion of Inamdar, we call condition (4) the shoulder

axiom.
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Strictly speaking, the phrase ‘T -symmetric system’ is ambiguous in
general since H(κ) may not be determined by T . However, in all prac-
tical cases (

⋃
T ) ∩ Ord = κ, so T does determine H(κ) in these cases.

We will talk about symmetric systems in some contexts in which T
is clear or irrelevant.

The following two amalgamation lemmas are proved in [7].

Lemma 2.3. Let T ⊆ H(κ) and let N be a T -symmetric system. Let
N ∈ N and let M ∈ N be a T -symmetric system such that N ∩N ⊆
M. Let

W(N ,M, N) := N ∪ {ΨN,N ′(M) : M ∈M, N ′ ∈ N , δN ′ = δN}
ThenW(N ,M, N) is the ⊆-minimal T -symmetric systemW such that
N ∪M ⊆W.

Given T ⊆ H(κ) and N0 and N1, T -symmetric systems, let us write
N0
∼=T N1 if |N0| = |N1| = n, for some n < ω, and there are enumera-

tions (N0
i : i < n) and (N1

i : i < n) of N0 and N1, respectively, for
which there is an isomorphism

Ψ : (
⋃
N0;∈, N0

i , T )i<n −→ (
⋃
N1;∈, N1

i , T )i<n

which is the identity on (
⋃
N0) ∩ (

⋃
N1).

Lemma 2.4. Let T ⊆ H(κ) and let N0 and N1 be T -symmetric systems
such that N0

∼=T N1. Then N0 ∪ N1 is the ⊆-minimal T -symmetric
system W such that N0 ∪N1 ⊆ W.

We will recursively build a sequence (Pβ : β ≤ κ) of forcing notions,
together with a sequence of predicates (Φα : α < κ). Theorem 2.1 will
be witnessed by Pκ. Given β < κ we let

Tβ = {N ∈ [H(κ)]ℵ0 : (N ;∈,Φβ) 4 (H(κ);∈ Φβ)}
Let Succ(κ) denote the set of successor ordinals below κ. To start

with, let us fix a function Φ : Succ(κ) −→ H(κ) with the property
that {α ∈ Succ(κ) : Φ(α) = x} is unbounded in κ for each x ∈ H(κ)
(which exists by 2<κ = κ), and let Φ0 be the satisfaction predicate
for the structure (H(κ);∈,Φ). Also, given any β > 0, Φβ will uni-
formly encode, among other things, the sequences (Φα : α < β) and
(Sat(Φα) : α < β), where Sat(Φα) denotes the satisfaction predicate
for the structure (H(κ);∈,Φα).

We will call an ordered pair (N, ρ), where

• N is a countable elementary submodel of (H(κ);∈,Φ0),
• ρ ∈ N ∩ κ, and
• N ∈ Tα+1 for every α ∈ N ∩ ρ,
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a model with marker.11

If (N, ρ) is a model with marker, we will sometimes say that ρ is the
marker of (N, ρ).

In our forcing construction, we will use models with markers (N, ρ)
in a crucial way. The presence of the marker ρ will tell us that N is to
be seen as ‘active’ for all stages in N ∩ ρ.

Given an unordered pair

e = {(N0, ρ0), (N1, ρ1)}
of models with markers, we will call e an edge in case

(1) N0
∼= N1;

(2) for every α ∈ N0 ∩ ρ0, if ᾱ = ΨN0,N1(α) < ρ1, then ΨN0,N1 is an
isomorphism between

(N0;∈,Φα+1)

and
(N1;∈,Φᾱ+1).

We note that, in the above definition, (N0, ρ0) and (N1, ρ1) may or
may not be distinct. Hence, an edge may contain two models with
markers or may just be the singleton {(N, ρ)} of a model with marker
(N, ρ).

Also, we call an ordered pair 〈(N0, ρ0), (N1, ρ1)〉 a directed edge if
{(N0, ρ0), (N1, ρ1)} is an edge. If G is a set of edges, we say that a
directed edge 〈(N0, ρ0), (N1, ρ1)〉 comes from G if {(N0, ρ0), (N1, ρ1)} ∈
G.

If e = 〈(N0, ρ0), (N1, ρ1)〉 is a directed edge, we write Ψe for ΨN0,N1 .
If β < κ, we say that an edge {(N0, ρ0), (N1, ρ1)} is below β if ρ0 ≤ β

and ρ1 ≤ β.
Given a set G of edges,12 we denote

⋃
G by ∆(G); i.e., ∆(G) is the

set of models with markers (N, ρ) for which there is some (N ′, ρ′) such
that {(N, ρ), (N ′, ρ′)} ∈ G.

Given a directed edge e = 〈(N0, ρ0), (N1, ρ1)〉 and an edge e′ =
{(N ′0, ρ′0), (N ′1, ρ

′
1)} such that

• e′ ∈ N0,
• max{ρ′0, ρ′1} ≤ ρ0, and
• ΨN0,N1(max{ρ′0, ρ′1}) ≤ ρ1,

11In the definition of Pβ , we will assume Φα+1 has been defined for all α < β.
While defining Pβ , we will refer to the notion of model with marker. In that case,
the marker ρ will be at most β, and hence Φα+1—and therefore Tα+1—will be
defined for all α ∈ N ∩ ρ.

12We think of sets of edges as graphs, hence the choice of the letter G in this
context.
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we denote

{(ΨN0,N1(N ′0),ΨN0,N1(ρ′0)), (ΨN0,N1(N ′1),ΨN0,N1(ρ′1))}

by Ψe(e
′).

Fact 2.5. Suppose e = 〈(N0, ρ0), (N1, ρ1)〉 is a directed edge and e′ =
{(N ′0, ρ′0), (N ′1, ρ

′
1)} is and edge such that

• e′ ∈ N0,
• max{ρ′0, ρ′1} ≤ ρ0, and
• ΨN0,N1(max{ρ′0, ρ′1}) ≤ ρ1.

Then Ψe(e
′) is an edge.

Proof. For i ∈ {0, 1}, let N ′′i = ΨN0,N1(N ′i). Then, for each i, the
elementarity of ΨN0,N1 , together with the fact that N ′0

∼= N ′1 and ρ′i ∈
N ′i , implies that N ′′0

∼= N ′′1 and ΨN0,N1(ρ′i) ∈ N ′′i . Furthermore, for each
α ∈ N ′i ∩ ρ′i, the fact that ΨN0,N1 is also an isomorphism between the
structures (N0;∈,Φα+1) and (N1;∈,Φᾱ+1), for ᾱ = ΨN0,N1(α), together
with (N ′i ;∈,Φα+1) 4 (N0;∈,Φα+1), implies that

(N ′′i ;∈,Φᾱ+1) 4 (N1;∈,Φᾱ+1) 4 (H(κ);∈,Φᾱ+1)

Hence, (N ′′i ,ΨN0,N1(ρ′i)) is a model with markers. Finally, if α and ᾱ
are as above, with i = 0, β = ΨN ′0,N

′
1
(α), and α† := ΨN ′′0 ,N

′′
1
(ᾱ) =

ΨN0,N1(β) < ΨN0,N1(ρ′1), then letting α∗ = max{α, β} and α∗∗ =
ΨN0,N1(α∗) and using the fact that (N ′0;∈,Φα+1) ∼= (N ′1;∈,ΦΨN′0,N

′
1
(α)+1)

and that ΨN0,N1 is also an isomorphism between (N0;∈,Φα∗+1) and
(N1;∈,Φα∗∗+1), we get that (N ′′0 ;∈,Φᾱ+1) ∼= (N ′′1 ;∈,Φα†+1). To see
this, simply use that (N ′0,∈,Φα+1) 4 (N0;∈,Φα+1), (N ′1,∈,Φβ+1) 4
(N0;∈,Φβ+1) and, if α∗ > min{α, β}, also that Φα∗+1 codes the satis-
faction relation of (H(κ);∈,Φmin{α,β}+1). �

Given a set G of edges, we say that G is closed under restrictions
if {(N0, α0), (N1, α1)} ∈ G whenever {(N0, ρ0), (N1, ρ1)} ∈ G, α0 ∈
N0 ∩ (ρ0 + 1), and α1 ∈ N1 ∩ (ρ1 + 1). Also, we say that G is closed
under copying in case for every directed edge e = 〈(N0, ρ0), (N1, ρ1)〉
coming from G and every edge e′ = {(N ′0, ρ′0), (N ′1, ρ

′
1)} ∈ G, if e′ ∈ N0,

max{ρ′0, ρ′1} ≤ ρ0, and ΨN0,N1(max{ρ′0, ρ′1}) ≤ ρ1, then Ψe(e
′) ∈ G.

If ∆ is a set of models with markers and β < κ, we let

N∆
β = {N : (N, β) ∈ ∆}.13

13Note that if G is a set of edges closed under restrictions and ∆ = ∆(G), then
N∆

0 is clearly the same thing as dom(∆).
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We say that a set G of edges is sticky in case for every ordinal α and

for all N0, N1 ∈ N∆(G)
α+1 , if δN0 = δN1 , then {(N0, α + 1), (N1, α + 1)} ∈

G.14

Given sets G0 and G1 of edges, we say that G0 and G1 are compatible

in case for all α < κ and N0, N1 ∈ N∆(G0)
α+1 ∪N

∆(G1)
α+1 such that δN0 = δN1

we have that (N0;∈,Φα+1) ∼= (N1;∈,Φα+1). If this is the case, then
there is a ⊆-minimum sticky set G of edges including both G0 and G1

and which is closed under restrictions and closed under copying. We
denote this set G by G0 ⊕ G1.

If G is a set of edges, we denote by M(G) some canonically chosen
structure with universe

⋃
dom(∆(G)) coding G and

〈(α,Φα+1 ∩
⋃

dom(∆(G))) : α ∈
⋃
{N ∩ ρ : (N, ρ) ∈ ∆(G)}〉

Also, we consider the following form of the isomorphism relation ∼=T for
T -symmetric systems, for sets of edges: If G0 and G1 are sets of edges,
we write G0

∼= G1 in case there is an isomorphism Ψ : M(G0) −→M(G1)
which is the identity on (

⋃
dom(∆(G0))) ∩ (

⋃
dom(∆(G1))).

We will use the following easy extension of Lemma 2.4.

Lemma 2.6. Let G0 and G1 be sticky sets of edges closed under restric-
tions and under copying. Suppose G0

∼= G1. Then G0 ⊕ G1 is the union
of G0 ∪ G1 and the set of unordered pairs {(N0, α0 + 1), (N1, α1 + 1)}
such that δN0 = δN1, α0 ∈ N0, α1 ∈ N1, and for which there is some

α ≥ α0, α1 such that N0 ∈ N∆(G0)
α+1 and N1 ∈ N∆(G1)

α+1 .15 Hence, if, in ad-

dition, N∆(G0)
0 and N∆(G1)

0 are Φ0-symmetric systems and N∆(G0)
α+1 and

N∆(G1)
α+1 are Φα+1-symmetric systems for each α < κ, then N∆(G0⊕G1)

0 is

a Φ0-symmetric system and N∆(G0⊕G1)
α+1 is a Φα+1-symmetric system for

each α < κ.

If G is a set of edges and α < κ, we let

G|α = {{(N0, ρ0), (N1, ρ1)} ∈ G : ρ0, ρ1 ≤ α}

We will need the following easy lemma.

Lemma 2.7. Suppose G is a sticky set of edges closed under restric-

tions and under copying. Suppose N∆(G)
0 is a Φ0-symmetric system and

N∆(G)
α+1 is a Φα+1-symmetric system for each α < κ. Let α0 < κ. Then

the following holds.

14In particular, if G is sticky, then {(N,α+1)} ∈ G for every ordinal α and every

N ∈ N∆(G)
α+1 .

15We note that, in particular, G0 and G1 are compatible, and so G0 ⊕ G1 exists.
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(1) G|α0 is a sticky set of edges closed under restrictions and under
copying.

(2) N∆(G|α0 )
α = N∆(G)

α for every α ≤ α0. In particular, N∆(G|α0 )
0

is a Φ0-symmetric system and for each α < κ, N∆(G|α0 )
α+1 is a

Φα+1-symmetric system.

Given functions f0, . . . , fn, for some n < ω, we let

fn ◦ . . . ◦ f0

be f0 if n = 0; if n > 0, we let this expression denote the function f
with domain the set of x such that for every i < n, x ∈ dom(fi◦ . . .◦f0)
and (fi ◦ . . . ◦ f0)(x) ∈ dom(fi+1), and such that for every x ∈ dom(f),
f(x) = fn((fn−1 ◦ . . . ◦ f0)(x)).

If ~E = (〈(N i
0, ρ

i
0), (N i

1, ρ
i
1)〉 : i < n), for some n < ω, is a sequence

of pairs of models with markers such that N i
0
∼= N i

1 for all i < n, we
denote ΨNn−1

0 ,Nn−1
1
◦ . . .◦ΨN0

0 ,N
0
1

by Ψ~E . We also let δ~E = {δN i
0

: i < n}.
If G is a set of edges and a ∈ H(κ), we call 〈a, ~E〉 a G-thread if ~E is

a finite sequence of directed edges coming from G and a ∈ dom(Ψ~E).
Given a set G of edges and an ordinal α < κ, we say that

〈α, (〈(N i
0, ρ

i
0), (N i

1, ρ
i
1)〉 : i ≤ n)〉

is a connected G-thread in case the following holds.

(1) 〈α, (〈(N i
0, ρ

i
0), (N i

1, ρ
i
1)〉 : i ≤ n)〉 is a G-thread.

(2) α ∈ N0
0 ∩ (ρ0

0 + 1) and ΨN0
0 ,N

0
1
(α) < ρ0

1 + 1.

(3) If n > 0, then 〈(ΨN0
0 ,N

0
1
(α), (〈(N i

0, ρ
i
0), (N i

1, ρ
i
1)〉 : 0 < i ≤ n)〉 is

a connected G-thread.

If G is a set of edges and (δ, α), (δ, ᾱ) ∈ ω1 × κ, we say that (δ, ᾱ) is
G-accessible from (δ, α) if

• ᾱ = α or
• there is a connected G-thread 〈α, ~E〉 such that ᾱ = Ψ~E(α) and
δ ≤ min(δ~E).

In the proof of Lemma 2.8, if

~E = (〈(N i
0, ρ

i
0), (N i

1, ρ
i
1)〉 : i < n)

is a sequence of ordered edges, we will denote the sequence

(〈(Nn−1−i
1 , ρn−1−i

1 ), (Nn−1−i
0 , ρn−1−i

0 )〉 : i < n)

by (~E)−1.
We will need the following counterpart of Lemma 2.3 for sets of

edges.
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Lemma 2.8. Let β < κ. Let G0 be a sticky set of edges below β closed

under restrictions and under copying and such that N∆(G0)
0 is a Φ0–

symmetric system and N∆(G0)
α+1 is a Φα+1–symmetric system for each

α < κ. Let N ∈ N∆(G0)
β . Suppose G1 ∈ N is a sticky set of edges below

β closed under restrictions and under copying and such that N∆(G1)
0 is

a Φ0–symmetric system and N∆(G1)
α+1 is a Φα+1–symmetric system for

each α < κ. Suppose G0 ∩ N ⊆ G1. Finally, suppose that for every
Q ∈ dom(∆(G0)) ∩ N , G1 ∩ Q = G0 ∩ Q. Let G∗ be the union of the
following sets.

(1) G0

(2) The set G2 consisting of unordered pairs of the form

{(Ψ~E(N0),Ψ~E(ρ0)), (Ψ~E(N1),Ψ~E(ρ1))},

where {(N0, ρ0), (N1, ρ1)} ∈ G1, 〈{N0, N1}, ~E〉 is a G0-thread

with min(δ~E) = δN , and 〈ρ0, ~E〉 and 〈ρ1, ~E〉 are connected G0-
threads.

(3) The set G3 consisting of unordered pairs of the form

{(M0, α0), (M1, α1)}
such that δM0 = δM1 and for which there is some α < β such
that {(M0, α+ 1)} ∈ G2, {(M1, α+ 1)} ∈ G2, α0 ∈M0∩ (α+ 2),
and α1 ∈M1 ∩ (α + 2).

Then G∗ is a sticky set of edges closed under restrictions and under

copying, N∆(G∗)
0 is a Φ0–symmetric system, and N∆(G∗)

α+1 is a Φα+1–
symmetric system for each α < κ.

Proof. It is immediate to check that, by our construction, G∗ is closed

under restrictions. Also, it is clear that N∆(G∗)
0 = N∆(H)

0 , where

H = G0 ∪ {{(ΨN,N ′(M), 0)} : M ∈ N∆(G1)
0 , N ′ ∈ N∆(G0)

0 , δN ′ = δN}
Hence, by Lemma 2.3, N G∗0 is a Φ0-symmetric system. We will now

prove, for every α < β, that N∆(G∗)
α+1 is a Φα+1-symmetric system. The

point that needs the most work is the verification of the shoulder axiom

for N∆(G∗)
α+1 , which we will go through next.

For this, given M∗
0 , M∗

1 ∈ N G
∗

α+1 such that δM∗0 < δM∗1 , it is enough

to show that there is some M∗∗
1 ∈ N

∆(G∗)
α+1 such that δM∗∗1

= δM∗1 and
M∗

0 ∈ M∗∗
1 . If δM∗0 ≥ δN , then M∗

0 and M∗
1 are both in dom(∆(G0))

and so we are done by the shoulder axiom for N∆(G0)
α+1 . Hence, we

will assume in what follows that δM∗0 < δN . If M∗
0 ∈ N

∆(G0)
α+1 , then

we may of course assume that M∗
1 /∈ N∆(G0)

α+1 . It then follows, by the



Few new reals 17

definition of G2, together with the stickiness of G0 and the shoulder

axiom for N∆(G0)
α+1 , that there is a sequence ~E such that 〈M∗

0 ,
~E〉 is a

G0-thread with min(δ~E) = δN , 〈α+ 1, ~E〉 is a connected G0-thread, and
Ψ~E(M

∗
0 ) ∈ N . Then M0 := Ψ~E(M

∗
0 ) ∈ dom(∆(G0)) ∩N , and therefore

M0 ∈ dom(∆(G1)).

For i = 0, 1, let us fix αi < β, Mi ∈ N∆(G1)
αi+1 , and ~Ei be such that

〈(Mi, αi + 1), ~Ei〉 is a G0-thread, min(δ~Ei) = δN , and 〈αi + 1, ~Ei〉 is a
connected G0-thread. Suppose α = Ψ~E0(α0) = Ψ~E1(α1) and δM0 < δM1 .
By the analysis in the previous paragraph, in order to show the shoulder

axiom for N∆(G∗)
α+1 it will suffice to prove that there is some M ′

1 ∈ N
∆(G∗)
α+1

such that δM ′1 = δM1 and Ψ~E0(M0) ∈ M ′
1. By, if necessary, appending

suitable ordered edges from G0 at the right places using stickiness of

G0 and the shoulder axiom for N∆(G0)
γ+1 for appropriate γ—these places

could be the beginning or the end of ~E0, the beginning or the end of
~E1, or somewhere inside ~E0 or ~E1— we obtain ~E ′0 and ~E ′1 such that

Ψ−1
~E ′1
◦Ψ~E ′0

: (N ;∈) −→ (N ;∈)

is an isomorphism. But then Ψ−1
~E ′1
◦ Ψ~E ′0

� N is of course the identity

on N , which implies that α0 = α1 since Ψ−1
~E ′1
◦ Ψ~E ′0

(α0) = α1 from the

way we have constructed ~E ′0 and ~E ′1 from ~E0 and ~E1, respectively. Now,

by the shoulder axiom for N∆(G1)
α0+1 , we can find M †

1 ∈ N
∆(G1)
α0+1 such that

δM†1
= δM1 and M0 ∈ M †

1 , and M∗∗
1 := Ψ~E0(M †

1) is then a model in

N G∗α+1 as desired.
Similarly, by an argument as in the above proof of the shoulder

axiom, we can see that if M0, M1 ∈ N∆(G∗)
α+1 are such that δM0 = δM1 ,

then (M0;∈,Φα+1) ∼= (M1;∈,Φα+1). More specifically, and as in the
proof of the shoulder axiom, we may assume that we are in the case in

which for each i ∈ {0, 1} there are αi < β, M−
i ∈ N

∆(G1)
αi+1 , and ~Ei such

that 〈(M−
i , αi + 1), ~Ei〉 is a G0-thread, min(δ~Ei) = δN , 〈αi + 1, ~Ei〉 is a

connected G0-thread, and Ψ~Ei(M
−
i ) = Mi. To see that (M0;∈,Φα+1) ∼=

(M1;∈,Φα+1), we notice that α0 = α1 as in the previous argument
and therefore (M−

0 ;∈,Φα0+1) ∼= (M−
1 ;∈,Φα1+1). Also, by the same

construction as in the argument in the proof of the shoulder axiom,
we may obtain ~E ′0 = (〈(N i,0

0 , ρi,00 ), (N i,0
1 , ρi,01 )〉 : i ≤ n0) and ~E ′1 =

(〈(N i,1
0 , ρi,10 ), (N i,1

1 , ρi,11 )〉 : i ≤ n1) from ~E0 and ~E1, so that dom(~E ′0) =

dom(~E ′1) = N , Ψ~E ′0
(M−

0 ) = M0, and Ψ~E ′1
(M−

0 ) = M1. But then the
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desired conclusion holds since

Ψ~E ′0
: (N ;∈,Φα0+1) −→ (Nn0,0

1 ;∈,Φα+1)

and

Ψ~E ′1
: (N ;∈,Φα0+1) −→ (Nn1,1

1 ;∈,Φα+1)

are isomorphisms. The proof that (ΨM0,M1(M), α + 1) ∈ ∆(G∗) when-

ever M0, M1 are as above and M ∈ N∆(G∗)
α+1 ∩ M0, which concludes

the proof that N∆(G∗)
α+1 is a Φα+1-symmetric system, is contained in the

argument in the next paragraph.
We now show that G∗ is closed under copying. For this, suppose

e = {(M0, ρ0), (M1, ρ1)} ∈ G∗ and e′ = {(M ′
0, ρ
′
0), (M ′

1, ρ
′
1)} ∈ G∗ ∩M0

are such that max{ρ′0, ρ′1} ≤ ρ0 and ΨN0,N1(max{ρ′0, ρ′1}) ≤ ρ1, and let
us prove that ΨM0,M1(e′) ∈ G∗. The case when δM0 ≥ δN follows from

the construction of G2 – in this case of course M0, M1 ∈ N∆(G0)
α+1 . Now

suppose δM0 < δN . If e ∈ G2, then the conclusion follows from the
construction of G2 and the hypothesis that Q ∩ G1 = Q ∩ G0 for every
Q ∈ dom(∆(G0)) ∩ N . In order to finish this proof it thus remains to
consider the case in which e ∈ G3. We then have that there is α+1 ≥ ρ0,
ρ1 such that the edges {(M0, α+ 1)} and {(M1, α+ 1)} are both in G2.
Hence there are α∗ < β and {(M∗

0 , α
∗ + 1)}, {(M∗

1 , α
∗ + 1)} ∈ G1 such

that M0 = Ψ~E0(M∗
0 ) and M1 = Ψ~E1(M∗

1 ) for suitable ~E0 and ~E1 as in
the definition of G2 such that Ψ~E0(α∗) = Ψ~E1(α∗) = α. Since then

{(M∗
0 , α

∗ + 1), (M∗
1 , α

∗ + 1)} ∈ G1 by stickiness of G1 and Ψ−1
~E0

(e′) ∈
G1 ∩M∗

0 , e∗ := ΨM∗0 ,M
∗
1
(Ψ−1

~E0
(e′)) ∈ G1. This finishes the proof in this

case since then ΨM0,M1(e′) = Ψ~E1(e∗) ∈ G2 ⊆ G∗.
Finally, we note that stickiness of G∗ holds at α+1 (i.e., the unordered

pair {(M0, α + 1), (M1, α + 1)} ∈ G∗ for all M0, M1 ∈ N∆(G∗)
α+1 such

that δM0 = δM1) since, by the definition of G2, we can assume that
{(M0, α + 1), (M1, α + 1)} /∈ G0, δM0 = δM1 < δN , and hence

{(M0, α + 1), (M1, α + 1)} ∈ G3.

�

Remark 2.9. The set G∗ in the proof of Lemma 2.8 is precisely G0⊕G1.

Remark 2.10. The main reason for requiring our sets of edges G to

be sticky, rather than simply asking that N∆(G)
α+1 be a Φα+1-symmetric

system for each α, it to secure the above amalgamation lemma. As
observed by Inamdar, this lemma does not hold if we do not require
stickiness.
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We will call a function F pertinent if dom(F ) ∈ [Succ(κ)]<ω and for
every α ∈ dom(F ), F (α) = (bα, dα), where

• bα ∈ [Lim(ω1) × ω1]<ω is a regressive function (i.e., bα(δ) < δ
for each δ ∈ dom(bα));
• dα ∈ [ω1 ×H(κ)]<ω.

In the above situation, we will often refer to bα and dα as, respec-
tively, bFα , and dFα . Also, if α /∈ dom(F ), bFα and dFα are both defined to
be the empty set.

Given an ordered pair q = (F,G), where F is a function and G is a
set of edges, we will denote F and G by, respectively, Fq and Gq. Given

α ∈ dom(Fq), we will denote b
Fq
α and d

Fq
α by, respectively, bqα and dqα.

If q = (Fq,Gq), where Fq and Gq are as above, and β < κ, we let N q
β

stand for N∆(Gq)
β . If G is a set of ordered pairs as above, we denote by

NG
β the set

⋃
{N q

β : q ∈ G}.
Given q = (Fq,Gq), where Fq and Gq are as above, and given N ⊆

H(κ), we denote by q � N the ordered pair (Fq �� N,Gq ∩ N), where
Fq �� N is the function with domain dom(Fq) ∩N such that

(Fq �� N)(α) = (bqα ∩N, dqα ∩N)

for each α ∈ dom(F ) ∩N .
Also, given q = (Fq,Gq) as above, δ < ω1, and α < κ, we denote by

Ξq,α
δ the set of ordinals ᾱ such that (δ, ᾱ) is Gq-accessible from (δ, α),

ᾱ ∈ dom(Fq), and δ ∈ dom(bqᾱ).
We will now define our sequence (Pβ : β ≤ κ) and (Φβ : β < κ).

As we said before, Theorem 2.1 will be witnessed by Pκ. We already
defined Φ0.

Given α ≤ κ, Ġα will be the canonical Pα-name for the generic filter
added by Pα. We will denote the forcing relation for Pα by α, and
the extension relation for Pα by ≤α.

Given any α < κ, and assuming Pα has been defined, we let Ċα be
some canonically chosen (using Φ) Pα-name for a club-sequence on ωV1
for which the following holds.

• If Φ(α) is a Pα-name for a club-sequence on ω1, then Ċα = Φ(α).
• If Φ(α) is not a Pα-name for a club-sequence on ω1, then Ċα is

a Pα-name for ~C, where ~C ∈ V is some fixed club-sequence on
ω1.

Given δ ∈ Lim(ω1), we let Ċα
δ be a Pα-name for Ċα(δ) (where Ċα(δ)

of course refers to the δ-th member of Ċα).
We are finally in a position to define our construction. Let β < κ, and

suppose Pα, Φα and Φα+1 have been defined for each α < β. Suppose,
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in addition, that for all ᾱ < α < β, every Pᾱ-name is also a Pα-name.
We aim to define Pβ and Φβ+1, and also Φβ if β < κ is a nonzero limit
ordinal.

An ordered pair q = (Fq,Gq) is a Pβ-condition if and only if it has
the following properties.

(1) Gq is a sticky set of edges below β closed under restrictions and
under copying, and such that:

(a) N∆(Gq)
0 is a Φ0-symmetric system;

(b) for every α < β, N∆(Gq)
α+1 is a Φα+1-symmetric system.

(2) Fq is a pertinent function with dom(Fq) ⊆ β.
(3) For every α < β, the restriction of q to α, q|α, is a condition in
Pα, where

q|α := (Fq � α,Gq|α)

(4) If α ∈ dom(Fq), then Fq(α) = (bqα, d
q
α) has the following prop-

erties.
(a) For every δ ∈ dom(bqα) there is some N ∈ N q

α+1 such that
δ = δN .

(b) For every N ∈ N q
α+1 and δ ∈ dom(bqα), if bqα(δ) < δN < δ

and β = α + 1, then q|α α δN /∈ Ċα
δ .

(c) For every N ∈ N q
α+1, (δ, a) ∈ dqα ∩ N and N ′ ∈ N q

α+1, if
δN ′ = δN , then (δ,ΨN,N ′(a)) ∈ dqα.

(d) For every (δ, a) ∈ dqα and N ∈ N q
α+1, if δ < δN , then there

is some N ′ ∈ N q
α+1 such that δN ′ = δN and a ∈ N ′.

(5) Suppose β = α + 1. For every N ∈ N q
α+1, if Ξq,α

δN
6= ∅, then q|α

forces that for every a ∈ N there is some M ∈ N Ġα
α ∩Tα+1 ∩N

such that
(a) a ∈M and
(b) δM /∈

⋃
{Ċ ᾱ

δN
: ᾱ ∈ Ξq,α

δN
}.16

(6) Suppose {(N0, ρ0), (N1, ρ1)} ∈ Gq, α ∈ dom(Fq) ∩N0 ∩ ρ0, and
ᾱ = ΨN0,N1(α) < ρ1. Then:
(a) ᾱ ∈ dom(Fq);
(b) bqα ∩N0 = bqᾱ ∩N1;
(c) ΨN0,N1“dqα = dqᾱ ∩N1.

(7) The following holds for every α < β and every N ∈ N q
α+1.

(a) For all Q ∈ N q
α+1∩N , and (δ0, δ1) ∈ bqα, if δ1 < δQ < δ0 and

δ0 < δN , then there is some p ∈ Pα ∩N such that q|α ≤α p
and p α δQ /∈ Ċα

δ0
.

16It is worth noting that clauses (4)(b) and (5) only apply when β = α+1. Also,
notice that item (b) in (5) makes sense since, in the situation of this clause, every
Pᾱ-name is itself a Pα-name by our working hypothesis.
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(b) For every Q ∈ N q
α+1 ∩ N , if Ξ

(q�N)|α+1,α
δQ

6= ∅, then there is

some p ∈ Pα∩N such that q|α ≤α p and such that p forces

that for every a ∈ Q there is some M ∈ N Ġα
α ∩ Tα+1 ∩ Q

with a ∈M and δM /∈
⋃
{Ċ ᾱ

δQ
: ᾱ ∈ Ξ

(q�N)|α+1,α
δQ

}.17

Given Pβ-conditions qi, for i = 0, 1, q1 ≤β q0 if and only if the
following holds.

(1) dom(Fq0) ⊆ dom(Fq1) and for every α ∈ dom(Fq0),
(a) bq0α ⊆ bq1α and
(b) dq0α ⊆ dq1α .

(2) Gq0 ⊆ Gq1
(3) For every {(N0, ρ0), (N1, ρ1)} ∈ Gq0 and α ∈ N0 ∩ (ρ0 + 1), the

following holds.
(a) If ΨN0,N1(α) > β, then N q1

α ∩N0 = N q0
α ∩N0.

(b) If α ∈ dom(Fq1) ∩ ρ0 and ΨN0,N1(α) ≥ β, then:
(i) if bq1α ∩ N0 6= ∅, then α ∈ dom(Fq0) and bq1α ∩ N0 =

bq0α ∩N0;
(ii) if dq1α ∩ N0 6= ∅, then α ∈ dom(Fq0) and dq1α ∩ N0 =

dq0α ∩N0.

We will refer to clause (7) of the definition of Pβ holding for q by
saying that q is N-saturated below β.

Fact 2.11. ≤β is a transitive relation.

Proof. Let q0, q1, q2 ∈ Pβ and suppose q1 ≤β q0 and q2 ≤β q1. In order
to show that q2 ≤β q0, it suffices to verify (3) as all other clauses are
trivial. For this, let {(N0, ρ0), (N1, ρ1)} ∈ Gq0 , α ∈ N0 ∩ (ρ0 + 1) and
ᾱ = ΨN0,N1(α), and let us assume that ᾱ > β. We will prove that
N q2
α ∩ N0 = N q0

α ∩ N0. (The argument taking care of (3)(b) is the
same.)

Since Gq0 ⊆ Gq1 ⊆ Gq2 , by (3)(a) in the definition of q2 ≤β q1 we have
that N q2

α ∩ N0 = N q1
α ∩ N0. Since N q1

α ∩ N0 = N q0
α ∩ N0 by (3)(a) in

the definition of q1 ≤β q0, we have that N q1
α ∩N0 = N q0

α ∩N0. Putting
these two equalities together it follows that N q2

α ∩N0 = N q0
α ∩N0. �

We still need to define Φβ+1, and Φβ if β < κ is a nonzero limit
ordinal.

Let ∗β denote the restriction of the forcing relation β for Pβ to
formulas involving only names in H(κ). Then we let Φβ+1 ⊆ H(κ)

17Just to be clear, Ξ
(q�N)|α+1,α
δQ

is of course the set of ordinals ᾱ such that (δQ, ᾱ)

is (Gq)|α+1 ∩N -accessible from (δQ, α), ᾱ ∈ dom(Fq) ∩N , and δQ ∈ dom(bqᾱ).
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canonically code the satisfaction relation for the structure

(H(κ); Φβ,Pβ,∗β)

Finally, if β < κ is a nonzero limit ordinal, we let Φβ be a subset of
H(κ) canonically coding (Φα : α < β).

We will assume that the definition of (Φβ : β < κ) is uniform in β.
Finally, we define Pκ =

⋃
β<κPβ.

3. Proving Theorem 2.1

We will now prove the relevant lemmas that, together, will show Pκ
to witness Theorem 2.1.

Given partial orders P and Q, we will say that P is a weak suborder
of Q in case dom(P) ⊆ dom(Q) and for all p0, p1 ∈ dom(P), if p1 ≤P p0,
then p1 ≤Q p0. Thus, P is a suborder of Q in case it is a weak suborder
of Q and for all p0, p1 ∈ dom(P) we have that if p1 ≤Q p0, then p1 ≤P p0.

It is clear that if P is a weak suborder of Q, then every P-name is
itself also a Q-name.

Our first two lemmas are obvious.

Lemma 3.1. For all α < β ≤ κ, Pα is a weak suborder of Pβ.18

On the other hand, it is not true in general that for all α < β, Pα is
a suborder of Pβ.19

Lemma 3.2. For every β < κ, Pβ and ∗β are uniformly (in β) defin-
able over the structure (H(κ);∈,Φβ+1) without parameters.

Given partial orders P and Q, we will say that P is a weak complete
suborder of Q in case P is a weak suborder of Q and every predense
subset of P is also predense in Q (i.e., if D ⊆ P is predense in P, then
for every q ∈ Q there are p ∈ D and r ∈ Q such that r ≤Q p and
r ≤Q q). Also, we will call a sequence 〈Pα : α ≤ λ〉 of forcing notions a
weak forcing iteration if for all α < β, Pα is a weak complete suborder
of Pβ.

Given partial orders P and Q such that P is a weak suborder of Q,
we call a function π : Q −→ P a weak projection of Q onto P in case
for every q ∈ Q and every condition p ∈ P such that p ≤P π(q) there is
some r ∈ Q such that r ≤Q p and r ≤Q q. In this situation P is clearly
a weak complete suborder of Q.

Our sequence (Pβ : β ≤ κ) is a weak forcing iteration. In fact, given
α < β ≤ κ, the function sending q ∈ Pβ to q|α is a weak projection

18This lemma shows, in particular, that for all α < β, every Pα-name is also a
Pβ-name, and hence that our construction (Pβ : β ≤ κ) is well-defined.

19In fact, s. Remark 3.4.
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of Pβ onto Pα. This is an immediate consequence of the following
lemma, the proof of which is straightforward thanks to clause (3) in
the definition of the extension relation ≤α.

Lemma 3.3. Let α < β ≤ κ, let q ∈ Pβ and r ∈ Pα, and suppose
r ≤α q|α. Then

(Fq ∪ Fr,Gq ∪ Gr)
is a condition in Pβ extending both q and r in Pβ.

Given α < β ≤ κ, q ∈ Pβ, and r ∈ Pα extending q|α, we write q ⊕ r
to denote the common extension

(Fq ∪ Fr,Gq ∪ Gr)

of q and r defined in the statement of Lemma 3.3.
Given an edge {(M0, γ0), (M1, γ1)}, we will write

〈{(M0, γ0), (M1, γ1)}〉

to denote the ⊆-least set of edges containing {(M0, γ0), (M1, γ1)} and
closed under restrictions, i.e, the set

{{(M0, α0), (M1, α1)} : α0 ∈M0 ∩ (γ0 + 1), α1 ∈M1 ∩ (γ1 + 1)}

Remark 3.4. As we have just seen, our construction is a weak forcing
iteration, and in fact, given any α < β ≤ κ, the function sending
q ∈ Pβ to q|α is a weak projection of Pβ onto Pα. However, it is not an
iteration in the usual sense. Actually, it is easy to find ordinals α < β
and conditions q0, q1 ∈ Pα such that q1 ≤β q0 and yet q0 and q1 are
actually incompatible in Pα. For example, for some high enough β, we
can consider Pβ-conditions q0 = (∅,G0) and q1 = (∅,G1), where

• G0 = 〈{(N0, ρ0), (N1, ρ1)}〉,
• G1 is the union of

– G0,
– 〈{(M,ρ0)}〉 and
– {{(ΨN0,N1(M), γ)} : γ ∈ ΨN0,N1(M) ∩ ρ1},

and where ρ0 < ρ1, M ∈ N0, (M,ρ0) is a model with marker, and
ΨN0,N1(ρ0) > ρ1. Let α = ρ1. Then q1 ≤β q0 but q0 and q1 are
incompatible in Pα since every r ∈ Pα such that r ≤α q0, q1 would
have to be such that M ∈ N r

ρ0
(since it would extend q1) and M /∈ N r

ρ0

(since it would extend q0 and since ΨN0,N1(ρ0) > ρ1).

The following lemma will be used in the proofs of Lemmas 3.11 and
3.16.
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Lemma 3.5. Let β < κ and q ∈ Pβ. Suppose {(N0, ρ0), (N1, ρ1)} ∈ Gq,
α ∈ N0 ∩ ρ0, ȧ ∈ N0 is a Pα-name, ϕ(x) is a formula in the language
of set theory, (q � N0)|α ∈ Pα, and (q � N0)|α α ϕ(ȧ). Suppose
α∗ := ΨN0,N1(α) < ρ1. Then ΨN0,N1((q � N0)|α) = (q � N1)|α∗ ∈ Pα∗,
ΨN0,N1(ȧ) is a Pα∗-name, and (q � N1)|α∗ α∗ ϕ(ΨN0,N1(ȧ)).

Proof. By Lemma 3.2 and since

ΨN0,N1 : (N0;∈,Φα+1) −→ (N1;∈,Φα∗+1)

is an isomorphism, we have that ΨN0,N1((q � N0)|α) is a Pα∗-condition
and ΨN0,N1(ȧ) is a Pα∗-name. And since (q � N0)|α α ϕ(ȧ), we also
have that

ΨN0,N1((q � N0)|α) ∈ Pα∗
and

ΨN0,N1((q � N0)|α) α∗ ϕ(ΨN0,N1(ȧ))

again by Lemma 3.2 and the fact that

ΨN0,N1 : (N0;∈,Φα+1) −→ (N1;∈,Φα∗+1)

is an isomorphism. Finally, clause (6) in the definition of condition,
and the closure of Gq under copying, together entail that

ΨN0,N1((q � N0)|α) = (q � N1)|α∗ .
�

3.1. Properness and ℵ2-c.c. The goal of this subsection is to show
both the properness and the ℵ2-chain condition of all members Pβ of
our construction. Our first lemma shows, given a Pβ-condition q and
an edge {(N0, ρ0), (N1, ρ1)} below β such that q ∈ N0∩N1, how to add
{(N0, ρ0), (N1, ρ1)} to q.

Lemma 3.6. Let β < κ, q ∈ Pβ, and let {(N0, ρ0), (N1, ρ1)} be an
edge below β such that q ∈ N0 ∩ N1. Let G∗ be the union of Gq and
〈{(N0, ρ0), (N1, ρ1)}〉. Then q∗ = (Fq,G∗) is a condition in Pβ extend-
ing q.

Proof. This is immediate since G∗ is the ⊆-minimal sticky set of edges
closed under restrictions and such that Gq ∪ {(N0, ρ0), (N1, ρ1)} ⊆ G∗.

�

The proof of the following lemma is the same as that of the previous
lemma.

Lemma 3.7. Let β∗ ≤ κ, q ∈ Pβ, and N 4 H(κ) such that N ∈ Tβ+1

for every β ∈ N ∩ β∗. Suppose q ∈ N . Then there is an extension
q∗ ∈ Pβ∗ of q such that {(N, β)} ∈ Gq∗ for every β ∈ N ∩ β∗.
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It will be convenient to prove the ℵ2-chain condition and our main
properness result in the same lemma, by a simultaneous induction.
This will be the content of Lemma 3.11. Before getting there, it will be
useful to introduce some pieces of notation and some technical lemmas.

The following lemma, which is immediate, asserts a useful interpo-
lation property of the extension relation.

Lemma 3.8. Let β < κ, q ∈ Pβ, and N ∈ N q
0 . Suppose q � N ∈ Pβ,

and let p ∈ Pβ ∩N be a condition such that q ≤β p. Then q ≤β q � N
and q � N ≤β p.

Lemma 3.9. Let β < κ, q ∈ Pβ, and N ∈ N q
β . Then q � N ∈ Pβ.

Proof. We prove, by induction on α ≤ β, that

(q � N)|α := ((Fq �� N) � α, (Gq ∩N)|α)

is a condition in Pα.
Clause (1) in the definition of condition holds for (q � N)|α due to

the fact that if N is a symmetric system and M ∈ N , then N ∩M
is also a symmetric system. Clauses (2), (6) and (7) are trivial, and
clause (3) follows from the induction hypothesis. All subclauses in (4)
except for (4)(b) are trivial. Finally, (4)(b) holds by clause (a) in the
definition of N -saturatedness below β together with Lemma 3.8, and
(5) holds by clause (b) in the definition of N -saturatedness below β
together with, again, Lemma 3.8. �

We will also need the following technical lemma, which is an imme-
diate consequence of Lemma 2.8.

Lemma 3.10. Let α < β < κ, q ∈ Pβ, N ∈ N q
0 , t ∈ Pβ ∩ N ,

and suppose q � N ∈ Pβ and t ≤β q � N .20 Suppose for every Q ∈
N∆(Gq) ∩ N , Q ∩ Gt = Q ∩ Gq. Let p ∈ Pα, and suppose p ≤α q|α and
p ≤α t|α. Let q′ = q⊕ p and let G = Gq′ ⊕Gt. Then G is a sticky set of

edges closed under restrictions and under copying and such that N∆(G)
0

is a Φ0-symmetric system and N∆(G)
α+1 is a Φα+1-symmetric system for

every α < β.

Proof. This is by an application of Lemma 2.8 with Gq′ and Gt′ , where
t′ = t⊕ (p � N). �

Given a set G of edges and a pertinent function F such that dom(F ) ⊆⋃
dom(∆(G)), we define the closure of F via edges coming from G to be

20The hypothesis that q � N ∈ Pβ is actually not needed; if we drop it, then
t ≤β q � N needs to be replaced by a hypothesis to the effect that the relevant
forms of clauses (1) and (2) in the definition of ≤β hold between t and q � N .
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the function F ∗ with domain the set X of ordinals of the form Ψ~E(α),

for some α ∈ dom(F ) and some connected G-thread 〈α, ~E〉, defined by
letting F ∗(ᾱ) be, for every ᾱ ∈ X, the ordered pair (bF

∗
ᾱ , dF

∗
ᾱ ), where:

• bF ∗ᾱ = bFᾱ ∪ bF
′

ᾱ ,21 where bF
′

ᾱ is the union of the collection of sets
of the form Ψ~E“b

F
α , for some α ∈ dom(F ) and some connected

G-thread 〈α, ~E〉 with ᾱ = Ψ~E(α);22

• dF ∗ᾱ = dFᾱ ∪ dF
′

ᾱ , where dF
′

ᾱ is the union of the collection of sets
of the form Ψ~E“d

F
α , for some α ∈ dom(F ) and some connected

G-thread 〈α, ~E〉 with ᾱ = Ψ~E(α).

We will denote this function F ∗ by clG(F ).
Also, given pertinent functions F0 and F1 and given α ∈ dom(F0) ∩

dom(F1), let F0(α) + F1(α) denote

(bF0
α ∪ bF1

α , d
F0
α ∪ dF1

α ).

We will then denote by F0+F1 the function F with domain dom(F0)∪
dom(F1) defined by letting

• F (α) = Fε(α) for all ε ∈ {0, 1} and α ∈ dom(Fε) \ dom(F1−ε)
and
• F (α) = F0(α) + F1(α) for all α ∈ dom(F0) ∩ dom(F1).

Given a countable elementary substructure N of H(κ) and a Pβ-
condition q, for some β < κ, we will say that q is potentially (N,Pβ)-
generic if and only if for every maximal antichain A of Pβ such that
A ∈ N and every q′ ∈ Pβ such that q′ ≤β q there is some r ∈ A and
some q∗ ∈ Pβ such that q∗ ≤β r and q∗ ≤β† q′ for some β† ≥ β. Note
that this, even in the stronger version in which β† is required to be
β, is more general than the standard notion of (N,P)-genericity, for a
forcing notion P, which applies only if P ∈ N . Indeed, in our situation
Pβ is of course never a member of N if N ⊆ H(κ).

We are now ready to prove the main lemma in this subsection.

Lemma 3.11. The following holds for every β ≤ κ.

(1) Pβ is ℵ2-Knaster.
(2) If β < κ, then for every q ∈ Pβ and N ∈ N q

β ∩ Tβ+1, q is
potentially (N,Pβ)-generic.

Proof. We prove (1) and (2) by simultaneous induction on β < κ.
We start with the proof of (1). We prove that if (qν : ν < ω2) is a

sequence of Pβ-conditions, then there is I ∈ [ω2]ℵ2 such that qν0 and

21Recall that bFᾱ is defined to be ∅ if ᾱ /∈ dom(F ). And a similar remark applies
to the next bullet point.

22Ψ~E“b
F
α is of course bFα � min(δ~E).
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qν1 are compatible in Pβ for all ν0, ν1 ∈ I. Let M∗
ν be, for each ν < ω2,

a countable elementary submodel of H(κ+) such that ~Φβ, qν ∈M∗
ν and

let Mν = M∗
ν ∩H(κ).

By CH, we may find I ∈ [ω2]ℵ2 and some countable R such that
Mν0 ∩Mν1 = R for all distinct ν0, ν1 in I. Again by CH, and after
shrinking I if necessary, we may assume in addition that, for some
n, m < ω, there are, for all ν ∈ I, enumerations (N ν

i : i < n) and
(ξνj : j < m) of N qν

0 and dom(Fqν ), respectively, such that for all
ν0 6= ν1 in I there is an isomorphism Ψ between Mν0 and Mν1 fixing
Mν0 ∩Mν1 , where, given any ν ∈ I, Mν is some canonically chosen
structure with universe Mν coding R, (N ν

i : i < n), Gqν , (ξνj : j < m),

((bqνξνj , d
qν
ξνj

) : j < m), and ~Φβ ∩Mν .

We may moreover assume that (αν0 ;∈, πν0“R) ∼= (αν1 ;∈, πν1“R),
where ανi ∈ ω1 is the Mostowski collapse of Mνi ∩ Ord and πνi is
the corresponding collapsing function. But then we have that Ψ is the
identity on R ∩ Ord. This yields that Ψ is the identity on R ∩ H(κ)
since the function Φ : κ −→ H(κ) is surjective.

Let us now pick ν0 6= ν1 in I. We will prove that

q∗ := ((Fqν0 + Fqν1 ), (Gqν0 ⊕ Gqν1 ) ∪ 〈{(Mν0 , β), (Mν1 , β)}〉)

is a condition in Pβ extending both qν0 and qν1 . For this, we will prove,
by induction on α ≤ β, that

q∗|α := ((Fqν0 + Fqν1 ) � α, (Gqν0 ⊕ Gqν1 )|α ∪ 〈{(Mν0 , β), (Mν1 , β)}〉|α)

is a condition in Pα such that q∗|α ≤α qν0|α and q∗|α ≤α qν1 |α.
Clause (1) in the definition of Pα-condition holds thanks to Lemma

2.6, together with Lemma 2.7 in the case α < β. Clause (2) is trivial
by construction of the function Fqν0 + Fqν1 , and (3) is true by the
induction hypothesis. All subclauses of (4) except for (4)(b) are true by
construction of Fq0 +Fq1 , and (4)(b) holds by the induction hypothesis.
(6) follows from the fact that Ψ is an isomorphism between Mν0 and
Mν1 , and (7) is immediate from the construction of q∗ and the present
induction hypothesis.

Finally, for clause (5), suppose α = α0 + 1. It is enough to prove

that if N ∈ N qν0
α , Ξ

q∗|α0+1,α0

δN
6= ∅, a ∈ N , and q ∈ Pα0 is such that

q ≤α0 q
∗|α0 , then there is some q′ ≤α0 q and some M ∈ N q′

α0
∩Tα0+1∩N

such that a ∈M and q′ α0 δM /∈
⋃
{Ċ ᾱ

δN
: ᾱ ∈ Ξ

q∗|α0+1,α0

δN
}.

We may assume that α0 ∈ Mν0 (the proof when α0 ∈ Mν1 is com-
pletely symmetrical to the proof in the present case). Let us first con-
sider the case when α0 ≤ Ψ(α0). Let q′ ≤α0 q and M ∈ N q′

α0
∩Tα0+1∩N
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such that a ∈M and

q′ α0 δM /∈
⋃
{Ċ ᾱ

δN
: ᾱ ∈ Ξ

(qν0 )|α0+1,α0

δN
}

Such q′ and M exist since, if Ξ
q∗|α0+1,α0

δN
\ Ξ

(qν0 )|α0+1,α0

δN
6= ∅, then we

have that Ξ
(qν1 )|Ψ(α0)+1,Ψ(α0)

δN
6= ∅ (since α0 ≤ Ψ(α0)), and therefore

Ξ
(qν0 )|α0+1,α0

δN
6= ∅ as Ψ is an isomorphism between Mν0 and Mα1 . Let

ᾱ ∈ Ξ
q∗|α0+1,α0

δN
\ Ξ

(qν0 )|α0+1,α0

δN
. We will be done in this case if we can

show that q′ α0 δM /∈ Ċ ᾱ
δN

. Let α∗ = Ψ−1(ᾱ) and let us note that

α∗ ≤ α0 since ᾱ ≤ Ψ(α0). Since also α∗ ∈ Ξ
(qν0 )|α0+1,α0

δN
, we have that

q′ α0 δM /∈ Ċα∗
δN

. Suppose now that α∗ ≤ ᾱ (the case ᾱ < α∗ is
proved similarly, by reversing the roles of Mν0 and Mν1 in the following
argument). Now we note that {(Mν0 , α∗), (Mν1 , ᾱ)} ∈ Gq′ and therefore,
by (2) of our induction hypothesis for ᾱ, q′|ᾱ is potentially (Mν1 ,Pᾱ)-
generic. Hence, for every ξ < δN , every r ≤ᾱ q′ is Pᾱ†-compatible,
for some ᾱ† ≥ ᾱ, with some condition in Mν1 deciding whether or not
ξ ∈ Ċ ᾱ

δN
.

Claim 3.12. q′ α0 Ċ
α∗
δN

= Ċ ᾱ
δN

.

Proof. Let r ≤ᾱ q′, ξ < δN , suppose r α0 ξ ∈ Ċ ᾱ
δN

, and let us show

that r 6α0 ξ /∈ Ċα∗
δN

(arguing symmetrically we can show that if r α0

ξ /∈ Ċ ᾱ
δN

, then r 6α0 ξ ∈ Ċα∗
δN

). Let s ∈ Mν1 be a Pᾱ†-condition, for

some ᾱ† ≥ ᾱ, which is compatible with r in Pᾱ† and decides whether
or not ξ ∈ Ċ ᾱ

δN
. Since obviously also r ᾱ† ξ ∈ Ċ ᾱ

δN
, we must have

that s ᾱ† ξ ∈ Ċ ᾱ
δN

, and since Ċ ᾱ
δN

is a Pᾱ-name, we in fact have

that s|ᾱ ᾱ ξ ∈ Ċ ᾱ
δN

. Let q′′ be a common extension of r|ᾱ and s|ᾱ
in Pᾱ. Since {(Mν0 , α∗), (Mν1 , ᾱ)} ∈ Gq′′ , q′′ extends ΨN0,N1(s|ᾱ). But

ΨN0,N1(s|ᾱ) α∗ ξ ∈ Ċα∗
δN

by Lemma 3.5, from which it follows that

q′′ α∗ ξ ∈ Ċα∗
δN

. Since q′′|α∗ ≤α∗ r|α∗ , we in particular have that

r|α∗ 6α∗ ξ /∈ Ċα∗
δN

, and therefore r 6α0 ξ /∈ Ċα∗
δN

(if r α0 ξ /∈ Ċα∗
δN

, then

we would have that also r|α∗ α∗ ξ /∈ Ċα∗
δN

since Ċα∗
δN

is a Pα∗-name). �

The above claim finishes the proof in this case since q′ α0 δM /∈ Ċα∗
δN

.
The second case is when Ψ(α0) < α0. Since we may of course assume

that Ξ
q∗|α0+1,α0

δN
\ Ξ

(qν0 )|α0+1,α0

δN
6= ∅, we in fact have that Ξ

q∗|α0+1,Ψ(α0)

δN
\

Ξ
(qν0 )|α0+1,α0

δN
6= ∅, so it makes sense to define α1 as the maximum ordinal

in Ξ
(qν1 )|α0+1,Ψ(α0)

δN
.
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Since Ξ
q∗|α0+1,α0

δN
\ Ξ

(qν0 )|α0+1,α0

δN
6= ∅, there is some γ ∈ R such that

(δN , γ) is Gqν0 -accessible from (δN , α0) and Gqν1 -accessible form (δN , α1).
Using suitable instances of the shoulder axiom as in the proof of Lemma
2.8 we may then find sequences

~E0 = (〈(N i,0
0 , ρi,00 ), (N i,0

1 , ρi,01 )〉 : i ≤ n0)

and
~E1 = (〈(N i,1

0 , ρi,10 ), (N i,1
1 , ρi,11 )〉 : i ≤ n1)

such that 〈α0, ~E0〉 is a connected Gqν0 -thread with Ψ~E0(α0) = γ, 〈γ, ~E1〉
is a connected Gqν1 -thread with Ψ~E1(α0) = α1, min(δ~E0) = δN , N0,0

0 =

N , and N ′ := N1,1
n1

is such that δN ′ = δN .23 Letting then ~E be the

concatenation of ~E0 and ~E−1
1 , we have that 〈α0, ~E〉 is a connected Gq∗|α-

thread with Ψ~E(α0) = α1. Since N ′ ∈ N qν1
α1+1, by an instance of clause

(7)(b) in the definition of condition for qν1 together with Lemma 3.3,
we may find q′ ≤α0 q and M ′ ∈ N q′

α1
∩Tα1+1∩N ′ such that Ψ~E(a) ∈M ′

and

q′|α1 α1 δM ′ /∈
⋃
{Ċ ᾱ

δN
: ᾱ ∈ Ξ

(qν1 )|α1+1,α1

δN
}

Let M = Ψ−1
~E

(M ′) ∈ N and let us note that M ∈ N q′
α0
∩ Tα0+1 ∩ N

and a ∈ M . It thus suffices to prove that q′ α0 δM /∈ Ċ ᾱ
δN

for every

ᾱ ∈ Ξ
q∗|α0+1,α0

δN
. If ᾱ ∈ Ξ

(qν1 )|α0+1,Ψ(α0)

δN
, then we are clearly done since

then ᾱ ≤ α1. Hence, we may assume ᾱ ∈ Ξ
(qν0 )|α0+1,α0

δN
\Ξ

(qν1 )|α0+1,Ψ(α0)

δN
.

Let α∗ = Ψ(ᾱ) ≤ α1 and let us note that α∗ ∈ Ξ
(qν1 )α1+1,α1

δN
. It thus

follows that q′|α1 α1 δM /∈ Ċα∗
δN

. But now, arguing as in the proof
of Claim 3.12, using the fact that {(Mν0 , ᾱ), (Mν1 , α∗)} ∈ Gq′ and the

induction hypotheses for either ᾱ or α∗, we get that q′ ᾱ Ċ ᾱ
δN

= Ċα∗
δN

.

This finishes the proof in this case since q′ α0 δM /∈ Ċα∗
δN

.
Now that we know that q∗|α is a Pα-condition, it is easy to check

that it extends both qν0|α and qν1|α in Pα. The only point that is not
completely trivial is the verification of clause (3) in the definition of
the extension relation. But this clause holds thanks to the fact that
qν0 and qν1 carry the same information on R.

We will now prove (2). For this, it is enough to show that if A ∈ N
is a maximal antichain of Pβ, then there is some β† ≥ β such that q is

23Note that we can indeed proceed here as in the proof of Lemma 2.7 (more
specifically, as in the verification of the shoulder axiom at the successor stages of
that construction) since the definition of pertinent function implies that α0 and α1

are successor ordinals.
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≤β†-compatible with some condition in A∩N .24 The case β = 0 follows
at once from Lemma 2.3, so we will assume in what follows that β > 0.
By extending q if necessary we may, and will, assume that q extends
some r0 ∈ A.

Let us first consider the case that β = α+ 1. Suppose Ξq,α
δN
6= ∅. Let

Ḃ be a Pα-name for a (partially defined) function on ω1 × A sending
(η, r) to some condition t ∈ Pβ with the following properties (provided
there is some such t; otherwise the function is not defined at (η, r)).

(1) t|α ∈ Ġα

(2) t extends r.
(3) t extends q � N .25

(4) For every Q ∈ N t
α+1, if δQ 6= δQ′ for any Q′ ∈ N q

α+1, then
δQ > η.

(5) For every Q ∈ N q
0 ∩N , Q ∩ Gq = Q ∩ Gt, Q ∩ btα = Q ∩ bqα, and

Q ∩ dtα = Q ∩ dqα.

By conclusion (1) for β – which we have already proved – we know
that Pβ has the ℵ2-c.c. and hence we may assume that Ḃ ∈ H(κ).
Hence, by Lemma 3.2 and since N 4 (H(κ);∈,Φβ+1) and A ∈ N , we

may assume that Ḃ ∈ N .
By an instance of clause (5) in the definition of Pβ-condition, to-

gether with the openness of δ̄ \ Ċ ᾱ
δ̄

in V Pα for all ᾱ ≤ α and δ̄ < ω1,26

there is an extension p ∈ Pα of q|α for which there are M ∈ N p
α∩Tα+1∩

N and η < δM such that

(1) A, Ḃ, q � N ∈M ,
(2) p α [η, δN ] ∩ Ċ ᾱ

δ = ∅ whenever ᾱ is such that (δN , ᾱ) is Gq-
accessible from (δN , α) and there is (δ, δ̄) ∈ bqᾱ such that δ̄ <
δN < δ, and

(3) p α [η, δM ] ∩
⋃
{Ċ ᾱ

δN
: ᾱ ∈ Ξq,α

δN
} = ∅.

Indeed, by openness of the relevant sets δ \ Ċ ᾱ
δ (in the extension by

Pᾱ) we can extend q|α to some p0 ∈ Pα deciding some η0 < δN such that
[η0, δN ] ∩ Ċ ᾱ

δ whenever (δN , ᾱ) is Gq-accessible from (δN , α) and there
is (δ, δ̄) ∈ bqᾱ such that δ̄ < δN < δ (since there only finitely many such
pairs (δN , ᾱ)). Then, by an instance of clause (7)(b) in the definition of
condition, this time using the openness of the relevant (finitely many)

24This is of course the same thing as showing that there is some r∗ ∈ A∩N and
some q∗ ∈ Pβ such that q∗ ≤β r∗ and q∗ ≤β† q.

25We note that, by the assumption that q be N -saturated below β, q � N is
actually a Pα-condition. This, however, is not an essential point; one could in fact
phrase this condition alternatively, without using the fact that q � N ∈ Pα.

26Which follows from the openness of δ̄ \ Ċᾱ
δ̄

in V Pα together with Lemma 3.3.
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sets of the form δN \ Ċ ᾱ
δN

, we may extend p0 to some p ∈ Pα for which

there is some M ∈ N p
α ∩ Tα+1 ∩N and some η1 < δM such that A, Ḃ,

q � N , η0 ∈ M and such that p α [η1, δM ] ∩
⋃
{Ċ ᾱ

δN
: ᾱ ∈ Ξq,α

δN
} = ∅.

Then, letting η = max{η0, η1}, we get the desired conclusion.
By (2) of the induction hypothesis for α there is some u ∈ M ∩ Pα,

r∗ ∈ M ∩ A, and t∗ ∈ M ∩ Pβ such that u is Pα†-compatible with

p for some α† ≥ α and u forces in Pα that ḂĠα
(η, r∗) is defined and

ḂĠα
(η, r∗) = t∗. This is true since, in the extension of V by Pα, the

existence of such a member of A is witnessed by r0, as in turn witnessed

by q, and is expressible over (H(κ)V [Ġα];∈, H(κ)V , Ġα) by a sentence
with the objects Ḃ, and η as parameters, all of which are in M). Let
also p′ ∈ Pα be such that p′ ≤α† p and p′ ≤α† u.

Let β† be any ordinal such that β† ≥ β and such that ΨN0,N1(ρ0) <
β† for every edge {(N0, ρ0), (N1, ρ1)} ∈ Gq. We will now construct a
condition in Pβ ≤β-extending p′, t∗ and ≤β†-extending q. For this,
we let q′ = q ⊕ p′, G∗ = Gq′ ⊕ Gt∗ , and let F ∗ = clG∗(Fq′ + Ft∗). Let
q∗ = (F ∗,G∗). We already know that q∗|α is a condition in Pα, and
using this fact we will show that q∗ ∈ Pβ. It will then follow that
q∗ ≤β r∗ (by Lemma 3.8, since t∗ ≤β r∗ and since clearly q∗ � N ≤β t∗)
and q∗ ≤β† q (by t∗ ≤β q � N together with the fact that (5) above
holds for t∗, the definition of G∗ as Gq′ ⊕ Gt∗ , and the definition of F ∗

as clG∗(Fq′ + Ft∗), and the choice of β†), which will finish the proof of
the lemma in this case since r∗ ∈ N .

Clause (1) in the definition of condition holds for q∗ by Lemma 3.10
noting that, by the choice of t∗, we are indeed under the hypotheses
of this lemma. As usual (2) is trivial, (3) follows from the fact that
q∗|α ∈ Pα, and all subclauses of (4) except for (4)(b) are trivial. (4)(b)
follows from our choice of η and the fact that t∗ satisfies (5) with respect
to η, together with Lemma 3.5 and the induction hypothesis, and (5)
follows from Lemma 3.5, the induction hypothesis, and the fact that
for every Q ∈ N q

β such that δQ < δN and every ᾱ ∈ Ξq∗,α
δQ

there is some

α† ∈ Ξq∗,α
δQ
∩M such that q∗ α Ċ ᾱ

δQ
= Ċα†

δQ
—by arguments as in the

verification of clause (5) for the amalgamation q∗ in the proof of part
(1), using (2) of the induction hypothesis for α and for the relevant ᾱ.
Finally, (6) follows from the construction of F ∗ as clG∗(Fq′ + Ft∗), and
(7) is verified in the same way as (5).

The argument when Ξq,α
δN

= ∅ is exactly the same, except that in the
choice of η we make sure that it satisfies (1) and (2) above, rather than
(1)–(3). Also, in this case there is no need to argue in any M ∈ N ; we
can work in N itself.
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It remains to prove the lemma in the case that β is a limit ordinal.
Let α ∈ N ∩ β be such that dom(Fq) ∩ [α, β) ∩ N = ∅ and let β†

be defined in the same was as in the successor case. Using (1) of the
induction hypothesis for α, we may then find r∗ ∈ A∩N , t∗ ∈ Pβ ∩N ,
p ∈ Pα, and α† ≥ α such that

(1) p ≤α t∗|α,
(2) t∗ ≤β r∗,
(3) t∗ ≤β q � N ,
(4) p ≤α† q|α, and
(5) for every Q ∈ N q

0 ∩N , Q ∩ Gq = Q ∩ Gt∗ .
Finally, we amalgamate p, q and t∗ into a condition q∗ ∈ Pβ as

in the successor case; specifically, we let q′ = q ⊕ p, G∗ = Gq′ ⊕ Gt∗ ,
F ∗ = clG∗(Fq′ + Ft∗), and q∗ = (F ∗,G∗). The verification that q∗ is a
condition in Pβ such that q∗ ≤β t∗ and q∗ ≤β† q is contained in the
corresponding proof in that case. Since r∗ ∈ N , this concludes the
proof in the present case, and hence the proof of the lemma. �

Corollary 3.13. Pκ is proper.

Proof. Let N∗ 4 H(κ+) be a countable model such that Φ ∈ N∗ and
let q ∈ Pκ∩N∗. It is enough to show that there is an extension q∗ ∈ Pκ
of q which is (N∗,Pκ)-generic. Let N = N∗ ∩ H(κ). By Lemma 3.7
there is an extension q∗ ∈ Pκ of q such that {(N, β)} ∈ Gq∗ for every
β ∈ N ∩ κ. Let now A ∈ N∗ be a maximal antichain of Pκ and let
q′ ∈ Pκ be such that q′ ≤κ q∗. We will show that q′ is ≤κ-compatible
with a condition in A ∩N .

By the ℵ2-c.c. of Pκ (i.e., case κ of Lemma 3.11(1)) and cf(κ) ≥ ω2,
A ∈ N and there is some ordinal β ∈ N such that A is also a maximal
antichain of Pβ. Since A is a maximal antichain of Pκ to begin with,
we may assume, by picking β high enough, that dom(Fq′) \ β = ∅. By
Lemma 3.11(2) applied to β there are then r∗ ∈ A ∩ N , q∗ ∈ Pβ and
β† ≥ β such that q∗ ≤β r∗ and q∗ ≤β† q′|β. Let G∗∗ = Gq∗ ⊕ Gq′ and
F∗∗ = clG∗∗(Fq∗) and let q∗∗ = (F∗∗,G∗∗). Since dom(Fq′) ⊆ β, it is then
easy to show, by arguing as in the proof of Lemma 3.11, that q∗∗ is a
condition in Pκ such that q∗∗ ≤κ q′. But now we are done since also
q∗∗ ≤κ r∗. �

Remark 3.14. Our argument to prove properness does not work for
β < κ. In fact it may not be the case that Pβ be proper in general for
β < κ.

3.2. New reals. The following is proved in [9], Fact 2.6.

Lemma 3.15. P0 adds ℵ1-many Cohen reals.
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We will now use clause (6) in the definition of condition (and the
closure of Gq under copying whenever q is a condition) to prove Lemma
3.16, which is a counterpoint to Lemma 3.15. Lemma 3.16 shows that
Pκ does not add more than ℵ1-many new reals, and hence that this
forcing preserves CH (cf. the proof of Proposition 2.7 in [9] or the proof
sketched in the introduction).

Lemma 3.16. (Few new reals) Pκ adds not more than ℵ1-many new
reals.

Proof. Suppose, towards a contradiction, that there is a Pκ-condition
q and a sequence (ṙν)ν<ω2 of Pκ-names for subsets of ω such that

q κ ṙν 6= ṙν′

for all ν 6= ν ′. We will find an extension q∗ of q together with ν0 6= ν1

such that q∗ κ ṙν0 = ṙν1 , which will be a contradiction.
By Pκ =

⋃
β<κPβ, we may fix β < κ such that q ∈ Pβ. Let ν < ω2

be given. By Lemma 3.11(1) and, again, the fact that Pκ =
⋃
β<κPβ,

we may assume that ṙν ∈ H(κ) and we may find βν < κ above β and
such that ṙν is in fact a Pβν -name for a subset of ω.

For each ν < ω2 let N∗ν 4 H(κ+) be countable and containing q, Φ,
ṙν , and βν , and let Nν = N∗ν ∩H(κ).

Using CH we may find ν0 6= ν1 in ω2 such that

(Nν0 ;∈, q, ṙν0 , {βν0},Φβν0+1)

and
(Nν1 ;∈, q, ṙν1 , {βν1},Φβν1+1)

are isomorphic structures. In particular,

e = {(Nν0 , βν0 + 1), (Nν1 , βν1 + 1)}
is then an edge.

Let us assume that βν0 ≥ βν1 . By Lemma 3.6 we may find an ex-
tension q∗ ∈ Pβν0 of q such that e ∈ Gq∗ and Fq∗ = Fq. Let now
q′ ∈ Pβν0 be any extension of q∗|βν0 and suppose, towards a contradic-
tion, that q′ βν0 n ∈ ṙν0∆ṙν1 for some n < ω. Let us assume that
q′ βν0 n ∈ ṙν0 \ ṙν1 .

By Lemma 3.11(2), q∗|βν0 is potentially (Nν0 ,Pβν0 )-generic. Hence,

there are β†ν0
≥ βν0 and q′′ ∈ Pβν0 , q′′ ≤β†ν0 q′, such that q′′ ≤βν0 p

for some p ∈ Nν0 ∩ Pβ0 such that p βν0 n ∈ ṙν0 . We know that
(q′′|βν0 ) � Nν0 ∈ Pβν0 (by Lemma 3.9) and (q′′|βν0 ) � Nν0 ≤βν0 p (by
Lemma 3.8). We then have that

(q′′|βν0 ) � Nν0 βν0 n ∈ ṙν0 ,
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and therefore (q′′|βν1 ) � Nν1 ∈ Pβν1 and

(q′′|βν1 ) � Nν1 βν1 n ∈ ΨNν0 ,Nν1
(ṙν0)

by Lemma 3.5. Again by Lemmas 3.9 and 3.8, we have that q′′|βν1 ≤βν1
(q′′|βν1 ) � Nν1 , and therefore q′′|βν1 βν1 n ∈ ΨNν0 ,Nν1

(ṙν0).27 But this
yields a contradiction since ΨNν0 ,Nν1

(ṙν0) = ṙν1 .
The argument in the case that q′ βν0 n ∈ ṙν1 \ ṙν0 is symmetrical

to the proof in the previous case; in that case, we take r ∈ Nν0 ∩ Pβν0
such that r βν0 n /∈ ṙν0 .28 �

Given α < κ and a Pκ-generic filter G, let

DG
α = {δN : N ∈ NG

α+1}

Let also Ḋα be a Pκ-name for DG
α .

We now prove the other conclusion in Theorem 2.1 involving cardinal
arithmetic.

Lemma 3.17. Pκ forces 2ℵ1 = κ.

Proof. In order to prove that Pκ 2ℵ1 ≥ κ, it suffices to show that Pκ
forces that Ḋα0 \ Ḋα1 6= ∅ for all α0 < α1. For this, let q be a Pκ-
condition, which we may assume is such that α1 ∈ dom(Fq), and let
N ∈ [H(κ)]ℵ0 be a sufficiently correct model such that q ∈ N . By the
same argument as in the proof of Lemma 3.6 we may find an extension

q′ ∈ Pκ of q such that N ∈ N q′

α0+1 and N q′

α1+1 = N q
α1+1. Let δ < δN be

above δM for every M ∈ N q
α1+1 and let q∗ ∈ Pκ be the extension of q′

resulting from adding (δ, δN) to dq
′
α1

. Then q∗ forces that δN ∈ Ḋα0\Ḋα1 .
Since q ∈ Pκ was arbitrary, this density lemma shows that Pκ forces
Ḋα0 \ Ḋα1 6= ∅.

Finally, a simple counting argument of nice Pκ-names for subsets
of ω1 (s. [17]) using the ℵ2-chain condition of Pκ and the fact that
|Pκ|ℵ1 = κℵ1 = κ shows that Pκ forces 2ℵ1 ≤ κ. �

3.3. Measuring. The following lemma completes the proof of Theo-
rem 2.1.

Lemma 3.18. Pκ forces Measuring.

Proof. Let G be Pκ-generic and let ~C = (Cδ : δ ∈ Lim(ω1)) ∈ V [G]
be a club-sequence on ω1. We want to see that there is a club of ω1

in V [G] measuring ~C. By Pκ =
⋃
α<κPα together with the ℵ2-c.c. of

27Cf. the argument in the verification of clause (5) in the definition of condition
for the amalgamation q∗ in the proof of ℵ2-c.c. from Lemma 3.11.

28Compare this proof with the proof of Claim 3.12.
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Pκ, we may assume that, for some α0 < κ, ~C = ĊG for some Pα0-name
Ċ ∈ H(κ) for a club-sequence on ω1. Again by the ℵ2-c.c. of Pκ and the
unboundedness of {α ∈ Succ(κ) : Φ(α) = Ċ} in κ, we may fix some
α > α0 in Succ(κ) such that Φ(α) = Ċ. We then have that Φ(α) is a
Pα-name, and by Lemma 3.3 it is in fact a Pα-name for a club-sequence
on ω1. Hence, we then have that ~C = Φ(α)G. We will see that (Ḋα)G
is a club of ω1 measuring ~C.

First of all, it is easy to see that Ḋα is forced to be unbounded in
ω1. In fact, given any condition q ∈ Pκ and any sufficiently correct
countable N 4 H(κ) such that q, α ∈ N , we may find by Lemma

3.6 an extension q∗ ∈ Pκ of q such that N ∈ N q∗

α+1, and every such

condition forces that δN ∈ Ḋα.

Claim 3.19. DG
α is closed in ω1.

Proof. It suffices to prove that if δ ∈ Lim(ω1) and q ∈ Pκ are such that
q forces δ to be a limit point of Ḋα, then there is some N ∈ N q

α+1 such
that δN = δ.

Suppose, towards a contradiction, that q ∈ Pκ and δ ∈ Lim(ω1) are
such that q forces δ to be a limit point of Ḋα but there is no N ∈ N q

α+1

such that δN = δ. We may extend q to a condition q′ obtained by
adding (δ̄, δ) to dqα, where δ̄ < δ is above δM for every M ∈ N q

α+1 such
that δM < δ, and taking copies under ΨN0,N1 as dictated by relevant
edges {(N0, ρ0), (N1, ρ1)〉} ∈ Gq. But that yields a contradiction since

then q′ forces, by clause (4)(d) in the definition of condition, that Ḋα∩δ
is bounded by δ̄. �

Given any q ∈ G such that α ∈ dom(Fq) and any limit point δ ∈ DG
α ,

if (δ, δ̄) ∈ bqα for some δ̄ < δ, then DG
α ∩(δ̄, δ) is disjoint from Cδ. Hence,

in order to finish the proof of the lemma it is enough to show that if
q ∈ G is such that α ∈ dom(Fq), N ∈ N q

α+1, and there is no q′ ∈ G

extending q and such that δN ∈ dom(bq
′
α ), then a tail of DG

α is contained
in CδN .

So, let q be a condition with α ∈ dom(Fq) and let N ∈ N q
α+1 be

such that δN /∈ dom(bq
′
α ) for any q′ ∈ Pκ extending q. It suffices to find

an extension q∗ of q in Pκ and some δ < δN with the property that

if q′ ∈ Pκ extends q∗ and M ∈ N q′

α+1 is such that δ < δM < δN , then

q′|α α δM ∈ Ċα
δN

.

We will assume that Ξ
q|α+1,α
δN

6= ∅—the proof in the case Ξ
q|α+1,α
δN

= ∅
is a simpler version of the proof in this case. Let α0 = max(Ξq,α

δN
),

which is well-defined since ∅ 6= Ξ
q|α+1,α
δN

⊆ Ξq,α
δN

. As usual, we may



36 D. ASPERÓ AND M.A. MOTA

find a sequence ~E = (〈(N i
0, ρ

i
0), (N i

1, ρ
1
i )〉 : i ≤ n) such that 〈α, ~E〉

is a connected Gq-thread with min(δ~E) = δN , Ψ~E(α) = α0, N0
0 = N ,

Nn
1 ∈ N

q
α0+1, and δNn

1
= δN .

Claim 3.20. There is some extension q0 ∈ Pκ of q and some a ∈ N
such that q0 forces in Pκ that if M ∈ N Ġκ

α0
∩ Tα0+1 ∩Nn

1 , Ψ~E(a) ∈ M ,
and

δM /∈
⋃
{Ċ ᾱ

δN
: ᾱ ∈ Ξq,α0

δN
},

then δM ∈ Ċα
δN

.

Proof. Let us assume that the conclusion fails. Given any extension q′

of q and any a ∈ N , by an instance of clause (7)(b) in the definition of
condition for q|α0+1 together with Lemma 3.3, there is some q′′ ≤κ q′
and some M ∈ N q′′

α0
∩ Tα0+1 ∩Nn

1 such that Ψ~E(a) ∈M and

q′′|α0 α0 δM /∈
⋃
{Ċ ᾱ

δN
: ᾱ ∈ Ξq,α0

δN
}

By our assumption, we then have that q′′|α0 6α0 δM ∈ Ċα
δN

. Hence,

every such q′′ forces δM /∈ Ċα
δN

. We have thus seen that q forces that

for every a ∈ N there is some M ∈ N Ġκ
α0
∩ Tα0+1 ∩ Nn

1 such that
Ψ~E(a) ∈M and

δM /∈
⋃
{Ċ ᾱ

δN
: ᾱ ∈ Ξq,α0

δN
} ∪ {Ċα

δN
}

Let now δ̄ < δN be above δQ for every Q ∈ N q
α+1 such that δQ < δN

and let q∗ be the result of adding (δN , δ̄) to bqα and closing under rel-
evant isomorphisms ΨN0,N1 . Then q∗ is a condition in Pκ extending
q (all clauses in the definition of condition except for (7)(b) are im-

mediate, and (7)(b) follows from Ξ
q∗|α+1,α
δN

\ {α} = Ξ
q|α+1,α
δN

⊆ Ξq,α
δN

and
the property of q we have just proved), which is a contradiction since
δN ∈ dom(bq

∗
α ). �

Let q0 and a ∈ N be as in Claim 3.20. Let δ < δN be above δQ for
every Q ∈ N q0

α+1 such that δQ < δN and let q∗ be the extension obtained
by adding the pair (δ, a) to dq0α and closing under relevant isomorphisms
ΨN0,N1 .

We now show that q∗ and δ are as desired. For this, suppose q′ ∈ Pκ
extends q∗ and M ∈ N q′

α+1 is such that δ < δM < δN . By an instance
of (4)(d) in the definition of condition for q′, we then have some M ′ ∈
N q′

α+1 such that δM ′ = δM and a ∈ M ′. By the shoulder axiom for

N q′

α+1 there is some N ′ ∈ N q′

α+1 such that δN ′ = δN and M ′ ∈ N ′. Then
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M ′′ = ΨN ′,N(M ′) ∈ N q′

α+1 ∩ N and a ∈ M ′′ since ΨN ′,N(a) = a as

a ∈ N ∩N ′. Since M ′′ ∈ N q′

α+1 ∩N , we then have of course that

q′|α α δM ′′ /∈
⋃
{Ċ ᾱ

δN
: ᾱ ∈ Ξq,α0

δN
}, 29

from which it follows by the choice of a that q′|α α δM ′′ ∈ Ċα
δN

. This
finishes the proof since δM ′′ = δM . �

3.4. On adapting the construction of Theorem 1.2 to other
contexts. It will be sensible to finish this section with some words
addressing the issue of what goes wrong if we try to modify the present
forcing so as to force CH together with Unif(~C), for some given ladder

system ~C = (Cδ : δ ∈ Lim(ω1))—as we mentioned in the introduction,
the conjunction of these two statements cannot hold. One could in fact
try to build something like a sequence of partial orders (Pβ)β≤κ in our
construction in such a way that, at every stage α < κ, we attempt to
add a uniformizing function on ~C for some colouring F : Lim(ω1) −→
{0, 1} fed to us by our book-keeping function Φ. Thus, rather than the
present pairs (b, d), we would plug in conditions for a natural forcing
for adding such a uniformizing function with finite conditions.

Everything would seem to go well—and in particular our construc-
tion would have the ℵ2-c.c., would be proper, and would preserve CH—
except that, because of the copying constraint expressed in the corre-
sponding version of clause (6) in the definition of condition, it would

not be able to force Unif(~C). The reason is that we would not be
in a position to rule out situations in which there is a condition q
with, for example, an edge {(N0, ρ0), (N1, ρ1)} in Gq for which there

is some α ∈ N0 ∩ ρ0 such that the colour of Ḟ (α) at δN0 is forced
to be, say, 0, whereas the colour of Ḟ (ᾱ) at δN0 is forced to be 1
(where ᾱ = ΨN0,N1(α) and where Ḟ (ξ) denotes of course the name for
the colouring to be uniformized at stage ξ of the construction). The
requirement, imposed by the current version of clause (6), that any
relevant amount of information below δN0 on the generic uniformizing
function at the coordinate α be copied over to the coordinate ᾱ would
then make it impossible for these generic uniformizing functions to be
defined on any tail of CδN0

. This type of problems does not arise when
forcing Measuring due to the more lenient nature of the ‘guessing’ in
this case; if we cannot get the club to eventually stay outside a given
Cδ, then it has to eventually get inside (see the density argument in
the proof of Lemma 3.18). The fact whether one or the other is the

29Note the presence in this expression of Ξq,α0

δN
rather than Ξq

′,α0

δN
or Ξ

q′|α+1,α
δN

.
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case is determined by the specific club-sequence being measured (and
by the ‘shape’ of the surrounding condition, of course).

It may also be worth pointing out that the type of situation des-
cribed above is a source of serious obstacles towards trying to force any
reasonable forcing axiom to hold together with CH using the present
methods. To see this in a particularly simple case, suppose, for ex-
ample, that (Qβ)β≤κ is exactly as our present construction (Pβ)β≤κ,
except that at each stage we force with Cohen forcing. This construc-
tion enjoys all relevant nice properties that (Pβ)β≤κ has. On the other
hand, Qκ cannot possibly force FAℵ1(Cohen), as it preserves CH. Let-
ting α∗ < κ be such that all reals in V Qκ have already appeared in
V Qα∗ , if α < κ is above α∗, then the real constructed by the generic
at the coordinate α will actually fail to be Cohen-generic over V Qα∗ ;
in fact, for every condition q ∈ Qκ such that α ∈ dom(Fq) there will
be a condition q′ extending q for which there is connected Gq′-thread

〈α, ~E〉 such that ᾱ := Ψ~E(α) < α∗. The information at the coordinate
ᾱ contained in any extension of q′ will then have to be copied over
into the coordinate α, which in this situation means that the real rα
constructed at the coordinate α is identical to the real at ᾱ, and this
obviously prevents rα from being Cohen-generic over V Qα∗ .
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