FEW NEW REALS

DAVID ASPERO AND MIGUEL ANGEL MOTA

ABSTRACT. We introduce a new method for building models of
CH, together with IIy statements over H(ws), by forcing. Unlike
other forcing constructions in the literature, our construction adds
new reals, although only N;-many of them. Using this approach,
we build a model in which a very strong form of the negation of
Club Guessing at w; known as Measuring holds together with CH,
thereby answering a well-known question of Moore. This construc-
tion can be described as a finite-support weak forcing iteration
with side conditions consisting of suitable graphs of sets of models
with markers. The CH-preservation is accomplished through the
imposition of copying constraints on the information carried by the
condition, as dictated by the edges in the graph.

1. INTRODUCTION

The problem of building models of consequences, at the level of
H(ws), of classical forcing axioms in the presence of the Continuum
Hypothesis (CH) has a long history, starting with Jensen’s landmark
result that Suslin’s Hypothesis is compatible with CH ([10]). Much of
the work in this area is due to Shelah (see [22]), with contributions also
by other people (see e.g. [2], [13], [19], [12], [6] or [20]). Most of the
work in the area done so far proceeds by showing that some suitable
countable support iteration whose iterands are proper forcing notions
not adding new reals fails to add new reals also at limit stages.

There are (nontrivial) limitations to what can be achieved in this
area. One conclusive example is the main result from [6], which high-
lights a strong global limitation: There is no model of CH satisfying a
certain mild large cardinal assumption and realizing all I1, statements
over the structure H(ws) that can be forced, using proper forcing, to
hold together with CH. In fact there are two 11, statements over H (ws),
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2 D. ASPERO AND M.A. MOTA

each of which can be forced, using proper forcing, to hold together
with CH—for one of them we need an inaccessible limit of measurable
cardinals—and whose conjunction implies 2% = 2N

The above example is closely tied to the following well-known obsta-
cle to not adding reals, which appears in [IT] (s. also [12]) and which
is more to the point in the context of this paperﬂ Given a ladder
system C' = (C5 : 6 € Lim(w;)) (i.e., each Cs is a cofinal subset of
d of order type w), let Unif(é) denote the statement that for every
colouring F' : Lim(w;) — {0, 1} there is a function G : wy — {0, 1}
with the property that for every 6 € Lim(w;) there is some o < 0
such that G(§) = F(0) for all £ € Cs \ a (where, given an ordinal «,
Lim(«) is the set of limit ordinals below o). We say that G uniformizes
F on C. Given C and F as above there is a natural forcing notion,
let us call it Qg p, for adding a uniformizing function for F on c
by initial segments. It takes a standard exercise to show that Qg ..
is proper, adds the intended uniformizing function, and does not add
reals. However, any long enough iteration of forcings of the form Qg .,

even with a fixed C , will necessarily add new reals. As a matter of
fact, the existence of a ladder system C for which Unif(C') holds cannot
be forced together with CH in any way whatsoever, as this statement
actually implies 2% = 2% The argument is well-known and may be
found for example in [11] and in [12].

In the present paper we distance ourselves from the tradition of ite-
rating forcing without adding reals and tackle the problem of building
interesting models of CH with an entirely different approach: starting
with a model of CH, we build a forcing which adds new realsﬂ albeit
only N;-many of them.

In [7], a framework for building finite support forcing iterations incor-
porating systems of countable models as side conditions was developed
(see also [3], [8], [9] for further elaborations). These iterations arise nat-
urally in, for example, situations in which one is interested in building a
forcing iteration of length x (where x is relatively long) which is proper
and which, in addition, does not collapse cardinals.ﬂ Much of what we
will say in the next few paragraphs will probably make sense only to

'We will revisit this obstacle in Subsection 2.2 with the purpose of addressing the
following question: why do our methods work with the present application (forcing
Measuring) and not with the problem of forcing Unif(C_") (for any given 6)‘7

2As it turns out, the construction resembles a classical finite support iteration,
and in fact it adds Cohen reals.

3For example if, as in [7], we want to force certain instances of the Proper Forcing
Axiom (PFA) together with 2% =k > R,.



Few new reals 3

readers with at least some familiarity with the framework as presented,
for example, in [7].

In the situations we are referring to here, one typically aims at a
construction which in fact has the Ny-chain condition, and in order
to achieve this goal it is natural to build the iteration in such a way
that conditions be of the form (F,A), for F' a (finitely supported) x-
sequence of working parts, and with A being a set of models with
markers, i.e., a set of ordered pairs (N, p), where N is a countable
elementary submodel of H(k), possibly enhanced with some predicate
T C H(k), and where p € NN k. N is one of the models for which we
will try to ‘force’ each working part F'(«), for every stage a € N N p,
to be generic for the generic extension of N up to that stage; thus, p
is to be seen as a ‘marker’ that tells us that /V is to be seen as ‘active’
as a side condition at least up to stage p.

In order for the construction to have the Ny-chain condition and be
proper, it is often necessary to start from a model of CH and require that
the domain of A be a set of models with suitable symmetry properties.
We call (finite) sets of models having these properties T-symmetric
systems (for a fixed ' C H(k)). One of these properties, and the one on
which we will focus our attention in a moment, is the following: In a 7-
symmetric system N, if N and N’ are both in N and NNw; = N’ Nwy,
then there is a (unique) isomorphism Wy n+ between the structures
(N; e, T,NNN) and (N'; €, T, NNN') which, moreover, is the identity
on NN N'.

At this point one could take a step back and analyse the pure side
condition forcing Py by itself. This forcing Py, which we can natu-
rally see as the first stage of our construction, consists of all finite
T-symmetric systems of submodels, ordered by reverse inclusion. Py
first appeared in the literature in [24]. It is a relatively well-known fact,
and was noted in [9][]that forcing with Py adds Cohen reals, although
not too many; in fact it adds exactly Ny-many of them. This may be
somewhat surprising given that Py adds, by finite approximations, a
new rather large object (a symmetric system covering all of H (li)v)ﬂ
The argument for this is contained in the proof of Lemma from
the present paper, but it will nonetheless be convenient at this point
to sketch it here.

4See also [18].

5Incidentally, Py is in fact strongly proper, and so each new real it adds is in
fact contained in an extension of V' by some Cohen real. The preservation of CH
by Py was exploited in [16].
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Let us assume, towards a contradiction, that CH holds and there is
a sequence (7,), <y, of Po-names which some condition A forces to be
distinct subsets of w. Without loss of generality we may take each 7,
to be a member of H(r). For each v we can pick N, to be a sufficiently
correct countable model-—meaning that (N,;€,T*) < (H(k);€,T*)
for a suitably expressive predicate T* C H (k)—containing all relevant
objects, which in this case includes A and 7,,. As CH holds, we may find
distinct indices v and v’ such that there is a unique isomorphism ¥y, v ,
between the structures (N,; €, T*, N, 7,) and (N,; €, T*, N, r,) fixing
N, N N,.. But then N* = NU{N,, N/} is a condition in P, forcing
that 7, = 7,,. The point is that if n € w and N’ is any condition
extending N* and forcing n € 7, then N is in fact compatible with
a condition M € N, forcing the same thing. This is true since N*
is an (IV,, Py)-generic condition. But then ¥y, x ,(M) is a condition
forcingn € Wy, v ,(7,) = 7 (since, by taking 7 expressive enough, we
may assume the forcing relation for Py to be definable in (H(k); €,T%)
without parameters). Finally, if A/ is any common extension of N’
and M, then N forces also that n € 7/, since it extends Wy, v , (M)
as Uy, n, (M) C N” by the symmetry requirementﬂ

Py has received some attention in the literature. For example, Todor-
¢evi¢ proved that Py adds a Kurepa tree (s. [18]). Also, [18] presents a
mild variant of Py which not only preserves CH but actually forces <.

The iterations with symmetric systems of models as side conditions
that we were referring to before do not preserve CH, and in fact they
force 2% = k > N;. The reason is of course that there are no symmetry
requirements on the working parts. Actually, even if the first stage of
the iterations—which is, essentially, Pp—preserves CH, the iterations
are in fact designed to add new reals at all later (successor) stages.

Something one may naturally envision at this point is the possibility
to build a suitable forcing with systems of models (with markers) as
side conditions while strengthening the symmetry constraints, so as to
make them apply not only to the side condition part of the forcing but
also to the working parts; one would hope to exploit the above idea
in order to show that the forcing thus constructed preserves CH, and
would of course like to be able to do that while at the same time forcing
some interesting statement. In the present paper we implement this
idea by proving that a very strong form of the failure of Club Guessing

6Tt is worth noticing the resemblance of this argument with Shelah’s argument
for showing that CH gets preserved by the limit of any countable support iteration
of length less than wo of proper forcings of size at most R (s. e.g. the proof of [I}
Theorem 2.10].)
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at wy known as Measuring (see [12]) that follows from PFA can be forced
adding new reals while, nevertheless, preserving CH.

Definition 1.1. Measuring holds if and only if for every sequence C =
(Cs : § € wy), if each Cs is a closed subset of § in the order topology,
then there is a club C' C w; such that for every § € C there is some
a < 0 such that either

e (CNd)\aCCy,or
e (C\a)NCs=10.

In the above definition, we say that C' measures C. Measuring is of
course equivalent to its restriction to club-sequences C on wy, i.e., to
sequences of the form C = (Cs : ¢ € Lim(w;)), where each Cj is a club
of 9. It is also not difficult to see that Measuring can be rephrased as
the assertion that the algebra P(w;)/NS,,—where NS, denotes the
nonstationary ideal on w;—forces that Cgl is a base for an ultrafilter
on the Boolean subalgebra of P(w}’) generated by the closed sets as
computed in the generic ultrapower M = V/ G, where CU‘J/1 denotes the
club filter on w; in V.

A partial order P is No-Knaster if for every sequence (g¢ : £ < wo)
of P-conditions there is a set I C w, of cardinality N, such that g and
e are compatible for all £, £ € I. Of course, every Ny-Knaster partial
order has the N,-chain condition.

Our main theorem is the following.

Theorem 1.2. (CH) Let k > wy be a regular cardinal such that 2<% =
k. Then there is a partial order P C H (k) with the following properties.

(1) P is proper.
(2) P is Ny-Knaster.
(3) P forces the following statements.

(a) Measuring
(b) CH
(c) 2% =k

Theorem answers a question of Moore, who asked if Measuring
is compatible with CH (see [12] or [21]). The relative consistency of
Measuring with CH has also been obtained recently by Golshani and
Shelah in [I5], where they have actually shown that every countable
support iteration of the natural proper posets for adding a club of w;
measuring a given club-sequence by countable approximations fails to
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add new realsﬂ Prior to [15], the strongest failures of Club Guessing
at w; known to be within reach of the forcing iteration methods for
producing models of CH without adding new reals (s. [23]) were only in
the region of the negation of weak Club Guessing at w;, = WCG, which
is the statement that for every ladder system (Cs : § € Lim(w;)) there
is a club C' C w; having finite intersection with each Ogﬁ Moore,
upon learning about an earlier version of Theorem [I.2], asked whether
Measuring implies that there are non-constructible reals. This question
was aimed at addressing the issue whether or not adding new reals is
a necessary feature of any successful approach to forcing Measuring +
CH, and it obtains a negative answer by the Golshani-Shelah result.
Our construction is a sequence (Ps : < k) which is not a forcing
iteration, in the usual sense of P, being a complete suborder of Pz for
all @ < 8 < Kk, but which nevertheless has a sufficiently nice property; it
is what we will refer to as a weak forcing iteration. This means that for
all o < 8, every P,-condition is a Pg-condition, for all py, p1 € Pa, if
p1 <p, po, then p; <p, poﬂ and, moreover, every predense subset of P,
is also predense in Pg. Using this piece of terminology, our construction
can be roughly described as a finitely supported weak forcing iteration
(Ps : B < k) in which conditions come together with a side condition
consisting of a graph of edges {(No, po), (N1, p1)}, where each (V;, p;)
is a model with marker, with suitable structural properties. Given
any such edge {(No,po), (N1,p1)}, No = N;. Furthermore, all the
information carried by the condition—including both its working part
and its side condition—contained in Ny and attached to any a € NyNpg
such that ¥y, n, (@) < p1 (where Wy, n, is the unique isomorphism
between (Ny; €) and (Ny; €)) is to be copied over into Ny by W, n;.
This copying will be crucially used in the proof of CH-preservatio
and also in other parts of the proof of Theorem (most notably
in the proof of the Ny-chain condition). The working part consists of
conditions for natural forcing notions adding instances of Measuring.

Mt is straightforward to see that these natural forcings for adding a given instance
of Measuring do not add reals; however, before [15] it was not known whether their
countable support iterations also (consistently) have this property.

8Measuring implies ~WCG. To see this, suppose (Cs : § € Lim(w;)) is a ladder
system and D C w; is a club measuring it. Then every limit point § € D of limit
points of D is such that D N Cs is bounded in ¢ since no tail of D N§ can possibly
be contained in Cj as Cs has order type only w.

9Although it not be the case that if p; <p, Po, then p1 <p_ po. In other words,
P, need not be a suborder of Pg.

108ee also [4] for another forcing construction using edges in order to preserve
GCH.
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Rather than delving into more details here, we direct the reader to
the actual construction in Section 2

1.1. Some observations on extensions of Measuring. We conclude
this introduction by briefly considering some extensions of Measuring.

It is immediate to see that Measuring is equivalent to the statement
that if (Cs : § € Lim(w;)) is such that each Cs is a countable collection
of closed subsets of §, then there is a club of w; measuring all mem-
bers of Cs for each §. We may thus consider the following family of
strengthenings of Measuring.

Definition 1.3. Given a cardinal s, Meas,; holds if and only if for every
family C consisting of closed subsets of w; and such that |C] < k there
is a club C' C w; with the property that for every D € C and every
0 € C there is some « < 9 such that either

e (CNH)\aCD,or

e (CN&)\a)nD =0.

Measy, is trivially true in ZFC. Also, it is clear that Meas, implies
Meas), whenever A < x, and that Measy, implies Measuring.

Recall that the splitting number, s, is the minimal cardinality of
a splitting family, i.e., of a collection X C [w]™ such that for every
Y € [w]™ there is some X € X such that X NY and Y \ X are both
infinite.

In the proof of Fact if (Cs : 6 € Lim(wy)) is a ladder system on
wiy, we write (Cs(n))n<w to denote the strictly increasing enumeration

of Cs. Also, [, B) ={£ € Ord : a <& < S} for all ordinals « < S.
Fact 1.4. Meas, is false.

Proof. Let X C [w]™ be a splitting family. Let (Cs)seLim(w) be a ladder
system on w; such that Cs(n) is a successor ordinal for each 6 € Lim(w)
and n < w, and let C be the collection of all sets of the form

z¥ = | J{Cs(n), Cs(n+1)) : n e X}u {5}

for some ¢ € Lim(w;) and X € X. Let D be a club of wq, let § < w;
be a limit point of D, and let

Y={n<w: [Csn), Cs(n+1))N D # 0}

Let X € X be such that X NY and Y \ X are infinite. Then Z N D
and D\ Zg* are both cofinal in §. Hence, D does not measure C. [

The following is proved in joint work of the first author with John
Krueger.
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Theorem 1.5. ([5]) Measy, can be forced over any model of ZEC and
follows from BPFA.

Another natural way to strengthen Measuring is to allow, in the se-
quence to be measured, not just closed sets, but also sets of higher
complexity (from a descriptive set-theoretic point of view). The version
of Measuring where one considers sequences X = (X; : 6 € Lim(w;)),
with each X an open subset of § in the order topology, is of course
equivalent to Measuring. A natural next step would therefore be to
consider sequences in which each Xj is a countable union of closed
sets. This is of course the same as allowing each Xy to be an arbitrary
subset of 0. Let us call the corresponding statement Measuring™:

Definition 1.6. Measuring® holds if and only if for every sequence
X = (X5 : 6 € Lim(wy)), if X5 C ¢ for all ¢, then there is some club
C C wy such that for every 6 € C, a tail of C'N 4 is either contained in

or disjoint from Xj.

It is easy to see that Measuring™ is false in ZFC. As a matter of fact,
given a stationary and co-stationary S C wy, there is no club of w;
measuring X = (SN : € Lim(wp)). In fact, if C' is any club of wy,
then both CN.SNJ and (CNJ)\ S are cofinal subsets of § for each ¢
in the club of limit points in w; of both C'N.S and C'\ S.

The status of Measuring™ is more interesting in the absence of the Ax-
iom of Choice. Let C,, = {X Cw; : C' C X for some club C' of w;}.

Observation 1.1. (ZF+ C,, is a normal filter on wy) Suppose X =
(Xs : 6 € Lim(wy)) is such that
(1) X5 €6 for each §.
(2) For each club C C wy,
(a) there is some 6 € C such that C N X5 # 0, and
(b) there is some 6 € C' such that (C'NJ)\ X5 # 0.

Then there is a stationary and co-stationary subset of wy definable
from X.

Proof. We have two possible cases. The first case is when for all o < wy,
either
e Wl={d<w : a¢ X;}isinC,,, or
e W!={d<w : a€ Xs}isinC,,.
For each a < w; let W, be W¢ for the unique € € {0,1} such that
wW¢ e C,,, and let W* = A ,, W, € Cy,,. Then X5, = X, Ny for all
6o < 01 in W*. It then follows, by (2), that S = sy« X5, which of

course is definable from X , is a stationary and co-stationary subset of
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wi. Indeed, suppose C' C w; is a club, and let us fix a club D C W*.
There is then some d € C N D and some o« € C N DN Xs. But then
o € Ssince 6 € W* and a € W* N X;5. There is also some § € C N D
and some o € C'N D such that o ¢ Xs, which implies that « ¢ S
by a symmetrical argument, using the fact that X5, = Xj, N dy for all
60 < 67 in W™,

The second possible case is that in which there is some o < w; with
the property that both W2 and W} are stationary subsets of w;. But
now we can let S be W2, where « is first such that W2 is stationary
and co-stationary. O

It is worth comparing the above observation with Solovay’s classic
result that an wq-sequence of pairwise disjoint stationary subsets of w;
is definable from any given ladder system on w; (working in the same
theory).

Corollary 1.7. (ZF+ C,, is a normal filter on wy) The following are
equivalent.

(1) Cy, is an ultrafilter on w;.
(2) Measuring”
(3) For every sequence (X5 : 0 € Lim(wy)), if Xs C & for each 6,
then there is a club C C wy such that either
e CNé6C Xy for every d € C, or
e CNXs=0 for every § € C.

Proof. (3) trivially implies (2), and by the observation (1) implies (3).
Finally, to see that (2) implies (1), note that the argument right after
the definition of Measuring”™ uses only ZF together with the regularity
of wy and the negation of (1). O

In particular, the strong form of Measuring”™ given by (3) in the above
observation follows from ZF together with the Axiom of Determinacy.

Much of the notation used in this paper follows the standards set
forth in [14] and [I7]. Other, less standard, pieces of notation will be
introduced as needed. The rest of the paper is structured as follows.
In Section [2| we construct a sequence (Ps : < k) of forcing notions.
In Section |3| we prove the relevant facts about this construction which
will show P, to witness the conclusion of Theorem [1.2] Subsection [3.4]
contains some remarks on why our construction in Section [2] cannot
possibly be adapted to force Unif(@) for any ladder system C (which, as
we already mentioned, is well-known to be incompatible with CH), and
on the (closely related) obstacles towards building models of reasonable
forcing axioms together with CH using the present approach.
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2. THE MAIN CONSTRUCTION

The theorem we will prove in this and the next section, we recall, is
the following.

Theorem 2.1. (CH) Let k > wy be a reqular cardinal such that 2<% =
k. Then there is a partial order P C H(wy) with the following proper-
ties.
(1) P is proper.
(2) P is Ro-Knaster.
(3) P forces the following statements.
(a) Measuring
(b) CH
(c) 2% =k

In this section we present the construction of a certain sequence
(Ps : B < k) of forcing notions. In Section (3| we will prove that P, is
a forcing P witnessing the conclusion of Theorem [2.1]

We start out by fixing some pieces of notation that will be used in
both this and the next section. If N is a set such that NNw; € wy, oy
denotes this intersection. dy is also called the height of N.

Given P C H(k) and N C H(k), we will tend to write (N, P)
as short-hand for (N, P N N). Also, if Ny and N; are €-isomorphic
elementary submodels of H(k), we refer to the unique €-isomorphism
U (Ng;€) = (Ny;€) as Uy w, -

We will make use of the following notion of symmetric system from
[7.

Definition 2.2. Let 7' C H(k) and let N be a finite collection of
countable subsets of H(k). We say that N is a T-symmetric system if
and only if the following holds.
(1) For every N € N, (N;€,T) is an elementary substructure of
(H(x); €,T).
(2) Given Ny and Np in N, if 0y, = On,, then there is a unique
isomorphism
\IINO,Nl : (N(); E,T) — (Nl; E,T)
Furthermore, Wy, , is the identity on Ny N Nj.
(3) For all Ny, Ny, M € N, if M € Ny and oy, = Op,, then
Uy (M) €N.
(4) For all N and M in N, if §,y < dy, then there is N’ € N such
that dpy = oy and M € N'.

Taking up a suggestion of Inamdar, we call condition (4) the shoulder
azriom.
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Strictly speaking, the phrase ‘T-symmetric system’ is ambiguous in
general since H (k) may not be determined by 7. However, in all prac-
tical cases (|J7') N Ord = &, so T" does determine H () in these cases.

We will talk about symmetric systems in some contexts in which T
is clear or irrelevant.

The following two amalgamation lemmas are proved in [7].

Lemma 2.3. Let T C H(k) and let N be a T-symmetric system. Let
N € N and let M € N be a T-symmetric system such that N NN C
M. Let

W(N,M,N) ZZNU{\I/N,N/(M) M e M, N’EN, N :(SN}

Then W(N', M, N) is the C-minimal T-symmetric system W such that
NUMCW.

Given T C H(k) and Ny and N;, T-symmetric systems, let us write
No =4 Ny i |Ng| = |N1| = n, for some n < w, and there are enumera-
tions (N? : i < n) and (N} : i < n) of Ny and N, respectively, for
which there is an isomorphism

v (U'/V‘Ov GaNZ‘OaT)i<n — (UNla €7Ni1aT)i<n
which is the identity on (|JMNy) N (UM).

Lemma 2.4. Let T C H (k) and let Ny and N7 be T-symmetric systems
such that Ny =7 Ni. Then Ny U N, is the C-minimal T-symmetric
system W such that No UN; CW.

We will recursively build a sequence (Ps : 5 < k) of forcing notions,
together with a sequence of predicates (®, : a < k). Theorem [2.1| will
be witnessed by P,. Given # < k we let

Ts = {N € [H(r)]™ : (N;€,®3) < (H(k); € p)}

Let Succ(k) denote the set of successor ordinals below k. To start
with, let us fix a function ® : Succ(k) — H(k) with the property
that {o € Suce(k) : ®(a) = x} is unbounded in x for each x € H (k)
(which exists by 2<" = k), and let ®; be the satisfaction predicate
for the structure (H(k);€,®). Also, given any f > 0, &5 will uni-
formly encode, among other things, the sequences (¢, : a < ) and
(Sat(®,) : a < ), where Sat(®,) denotes the satisfaction predicate
for the structure (H(k); €, ®,).

We will call an ordered pair (N, p), where

e N is a countable elementary submodel of (H(k); €, D),
e pc NNk, and
o N € T,y for every a € N Np,
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a model with marker["]

If (N, p) is a model with marker, we will sometimes say that p is the
marker of (N, p).

In our forcing construction, we will use models with markers (N, p)
in a crucial way. The presence of the marker p will tell us that N is to
be seen as ‘active’ for all stages in IV N p.

Given an unordered pair

e= {(NO,P0)> (vapl)}

of models with markers, we will call e an edge in case
(1) NO = Nl;
(2) for every av € Ny N po, if @ = U, n, () < p1, then Wy, y, is an
isomorphism between

(N07 SH q)a-i-l)

and
(N1; €, Pgy1).

We note that, in the above definition, (Ny, po) and (N, p1) may or
may not be distinct. Hence, an edge may contain two models with
markers or may just be the singleton {(N, p)} of a model with marker
(I, p).

Also, we call an ordered pair ((No, po), (N1, p1)) a directed edge if
{(No,po), (N1,p1)} is an edge. If G is a set of edges, we say that a
directed edge ((No, po), (N1, p1)) comes from G if {(Ng, po), (N1,p1)} €
g.
If e = ((No, po), (N1, p1)) is a directed edge, we write U, for Wy, n;-
If 5 < Kk, we say that an edge {(No, po), (N1, p1)} is below B if py < 3
and p; < .

Given a set G of edges[ we denote |JG by A(G); i.e., A(G) is the
set of models with markers (N, p) for which there is some (N’, p) such
that {(N,p), (N",p)} € G.

Given a directed edge e = ((No,po), (N1,p1)) and an edge ¢ =
{(NG, o), (N1, p1)} such that

e ¢ € Ny,
e max{p), o1} < po, and
* Uy, (max{p{),p’l}) < p1;

H1n the definition of Pg, we will assume ®,1 has been defined for all o < 3.
While defining Pg, we will refer to the notion of model with marker. In that case,
the marker p will be at most 5, and hence ®,,1—and therefore T, 1—will be
defined for all &« € N N p.

12\e think of sets of edges as graphs, hence the choice of the letter G in this
context.
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we denote

{09 N0 (VD) U vy v (06)) (W g, v, (V1) Uivg v (01))
by W, (€').

Fact 2.5. Suppose e = ((No, po), (N1, p1)) is a directed edge and ' =
{(N§, py), (N1, p1)} is an edge such that

e c €Ny,

e max{p;, p}} < po, and

o Uy n (max{p, p1}) < pr.
Then V(') is an edge.

Proof. For i € {0,1}, let N/' = Wy, ny(N/). Then, for each i, the
elementarity of Wy, n,, together with the fact that Nj = Ny and p] €
N/, implies that N = N{" and Wy, v, (p}) € N/'. Furthermore, for each
a € N/ N pj, the fact that Wy, n, is also an isomorphism between the
structures (No; €, @ot1) and (Ny; €, Psyq), for & = ¥y, v, (@), together
with (N/;€,®u11) < (No; €, Pyy1), implies that

(N/:€.@a1) < (V13 €, Bann) < (H(): €, D)

Hence, (N/, Uy, n,(p:)) is a model with marker. Finally, if o and &
are as above, with i = 0, § = Uy (), and of = Uy yo(@) =
Unony (B) < Ungn(ph), then letting of = max{w, S} and o™ =
U Ny, (@) and using the fact that (Nf; €, @41) = (N7; €, QD\I,N()’N{ (a)+1)
and that Wy, n, is also an isomorphism between (Ny; €, ®y+41) and
(Ny; €, Pperir), we get that (N €, Par1) = (N5 €,Ppuipq). To see
this, simply use that (N),€,®ot1) < (Nos €, Pat1), (V7. €, Ps41) <
(No; €, Pp11) and, if o* > min{a, £}, also that ®,+41 codes the satis-
faction relation of (H(k); €, Pminfa,8)+1)- d

Given a set G of edges, we say that G is closed under restrictions
if {(No, ), (N1, 1)} € G whenever {(Ng, po), (N1,p1)} € G, ap €
NoN(po+1), and a3 € Ny N (p1 +1). Also, we say that G is closed
under copying in case for every directed edge e = ((No, po), (N1, p1))
coming from G and every edge ¢’ = {(N{, p,), (N7, p1)} € G, if ¢ € Ny,
max{p, pr} < po, and Wi, v, (max{pf, pi}) < p1, then W.(e) € G.

If A is a set of models with markers and 3 < k, we let

Nt ={N: (N,8) e A}

13Note that if G is a set of edges closed under restrictions and A = A(G), then
N§ is the same thing as dom(A).
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We say that a set Q of edges is sticky in case for every ordinal a and
for all N, N, € N2 +1 , if O, = Oy, then {(No,a + 1), (N, a+ 1)} €
g

Given sets Gy and G; of edges, we say that Gy and G, are compatible
in case for all @ < k and Ny, N; € /\/'A (Go) UJ\/'A 1) such that on, = O,
we have that (No; €,Pnq1) = (Ny; €, <I>a+1) If this is the case, then
there is a C-minimum sticky set G of edges including both Gy and G;
and which is closed under restrictions and closed under copying. We
denote this set G by Gy ® G;.

If G is a set of edges, we denote by M(G) some canonically chosen
structure with universe | Jdom(A(G)) coding G and

(o, Pas N Jdom(A(G))) - e [ JINNp = (N.p) € A(G)})

Also, we consider the following form of the isomorphism relation = for
T-symmetric systems, for sets of edges: If Gy and G are sets of edges,
we write Gy = G; in case there is an isomorphism ¥ : M(Gy) — M(G;)
which is the identity on (|Jdom(A(Gy))) N (U dom(A(Gy))).

We will use the following easy extension of Lemma [2.4]

Lemma 2.6. Let Gy and Gy be sticky sets of edges closed under restric-
tions and under copying. Suppose Gy = G1. Then Gy @ Gy s the union
of Go U Gy and the set of unordered pairs {(No, a9 + 1), (N1,a1 + 1)}
such that dn, = On,, ap € Ny, an € Ny, and for which there is some
a > ap, oy such that Ny € NA ) 4nd N, € ./\/A 1) . % Hence, if, in ad-
dition, No\ ) and N2 are ®y-symmetric systems and N3 ) and

Nifl) are @, 1-symmetric systems for each a < k, then N()A gO@gl) 18

«
a ®o-symmetric system and /\/A(Qoeag1

each o < K.

is a Doyq1-symmetric system for

If G is a set of edges and a < k, we let
g’a = {{(N07p0)7 (N1,p1)} €q : py,p < a}

We will need the following easy lemma.

Lemma 2.7. Suppose G is a sticky set of edges closed under restric-
tions cmd under copying. Suppose ./\/’OA(Q) 15 a Py-symmetric system and

N2

a+1 is a ®oyq1-symmetric system for each o < k. Let ag < k. Then
the following holds.

Y particular, if G is sticky, then {(N,a+1)} € G for every ordinal o and every

NeN2D.

15We note that, in particular, Go and G; are compatible, and so Gy & G exists.
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(1) Gla, is a sticky set of edges closed under restrictions and under

copying.
(2) N2 Gleo) _ ArA©) for every a < «ap. In partzcular N (Glao)
1s a Po-symmetric system and for each o < K, N g|“0 S @

D 1-symmetric system.

Given functions fy,..., f,, for some n < w, we let

fno~~-of0

be fo if n = 0; if n > 0, we let this expression denote the function f
with domain the set of x such that for every i < n, x € dom(f;o...0 fp)
and (f;o...0 fo)(x) € dom(fi11), and such that for every x € dom(f),

(@) = ful(far 0.0 fo)(@)).

If & = (((Né,po) (Ni,ph)) i < n), for some n < w, is a sequence
of pairs of models with markers such that N} = N7 for all i < n, we
denote \Ingq’N?fl o...0Wpyo yo by Ug. We also let o7 = {5N8 ci<n}.

If G is a set of edges and a € H(k), we call (a,&) a G-thread if € is
a finite sequence of directed edges coming from G and a € dom(¥).
Given a set G of edges and an ordinal o < k, we say that

(o, ({(Ngs o), (N1, 1)) =i < m))
is a connected G-thread in case the following holds.
(1) (e (NG, ), (N, 1))+ & < ) s a G-thread.
(2) a€ Ny (pg+1) and Wyo yo(a) < pf + 1.
(3) I > 0, then {(Wyg wo(a), (NG, pb), (Ni, p1) + 0 < < ) is
a connected G-thread.
If G is a set of edges and (4, @), (, &) € wy X K, we say that (J, @) s
G-accessible from (9, «) if

e 0y — ( Or ~
e there is a connected G-thread («, &) such that @ = ¥g(a) and
o< min((Sg)
In the proof of Lemma [2.8] if
£ = (<(N8,p6),(Nf7pi)> t 1< n)
is a sequence of ordered edges, we will denote the sequence
(NP o) (NG 7)) i <in)

by (£)~"
We will need the following counterpart of Lemma for sets of
edges.
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Lemma 2.8. Let B < k. Let Gy be a sticky set of edges below [ closed
under restrictions and under copying and such that J\/O @) s ¢ Dy—
symmetric system and NaA +(f° 1s a Po1—symmetric system for each
a< k. Let N € NBA(GO . Suppose G1 € N 1is a sticky set of edges below

B closed under restrictions and under copying and such that N()A(gl) 18
a ®o—symmetric system and Nalfl 15 a Por1-symmetric system for
each a < k. Suppose Go N N C G;. Finally, suppose that for every
Q € dom(A(Gy)) NN, GiNQ = GyNQ. Let G* be the union of the
following sets.

(1) Go

(2) The set Gy consisting of unordered pairs of the form
{(Wz(No), Uelpo)), (Pg(N1), Velp1))},

where {(No, po), (N1, p1)} € G, ({No, N1}, E) is a Go-thread
with min(dg) = oy, and (po, €Y and (p1,E) are connected G-
threads.

(3) The set G3 consisting of unordered pairs of the form

{(Mo, ), (M1, 1)}
such that dpr, = O, and for which there is some o < B such
that {(My,a+1)} € Gy, {(My,a+1)} € Go, g € MyN(a+2),
and oy € My N (a+2).
Then G* is a sticky set of edges closed under restrictions and under
copying, NOA(Q*) is a ®g-symmetric system, and Ntﬁff*) is 4 Poyq—
symmetric system for each o < K.

Proof. 1t is immediate to check that, by our construction, G* is closed
under restrictions. Also, it is clear that /\fOA(g ) = N()A (H), where

H = GoU{H{(Unn(M),0)} : M e NG N € NgO), 6y, = 65}

Hence, by Lemma , /\/'Og* is a $p-symmetric system. We will now
prove, for every a < (3, that N - g )is a ®,1-symmetric system. The
point that needs the most work is the verification of the shoulder axiom
for NV} (g* , which we will go through next.

For thlS given Mg, My € N, such that dyz < 6y, it is enough
to show that there is some M;* € a+(1 such that dp+ = dpp and
Mg € My*. If 6y > O, then My and My are both in dom(A(Go))

and so we are done by the shoulder axiom for N A go . Hence, we

will assume in what follows that 0y < dn. If My € ./\foéA +f° then

we may of course assume that M; ¢ N, Aif“ . It then follows, by the

«
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definition of Gy, together with the stickiness of Gy and the shoulder
axiom for N JEO) that there is a sequence & such that (Mg, &) is a
Go-thread with min(éz) = oy, (v +1 5} is a connected Gy-thread, and
Us(Mg) € N. Then My := Wg(Mg) € dom(A(Gy)) N N, and therefore
My € dom(A(Gy)).

For i = 0, 1, let us fix a; < 8, M; € ./\fASrgf, and & such that
((M;, a; + 1),5;} is a Go-thread, min(dz) = oy, and (o; + 1 &) is a
connected Go-thread. Suppose o = Wz (ap) = W (1) and dag, < Opsy -
By the analysis in the previous paragraph, in order to show the shoulder
axiom for N )it will suffice to prove that there is some M]| € N . g )
such that (5M{ = Oy, and Ve 0(]\/[0) € Mj. By, if necessary, appendlng
suitable ordered edges from G, at the right places using stickiness of

Go and the shoulder axiom for /\/:/ Jr(lg ' for appropriate y—these places

could be the beginning or the end of 50, the beginning or the end of
&1, or somewhere inside & or &— we obtain &) and &£ such that

\Ifgil oWz : (N;€) — (N3 €)

is an isomorphism. But then \Ifgi,l e \Ilg(,) I N is of course the identity
1
on N, which implies that oy = oy since \Pg,l o \IJgé(ao) = «q from the
1

way we have constructed 5’ and 67’ from & and &, respectively. Now,
by the shoulder axiom for N, Afll), we can find M/ e N a gl) such that
5MT = 6u, and My € M, and My = \Ifgo(MlT) is then a model in
NZ., as desired.

Similarly, by an argument as in the above proof of the shoulder
axiom, we can see that if My, M; € Nf;r((f*) are such that dy, = 0,
then (My; €,Pq11) = (My;€,P,11). More specifically, and as in the
proof of the shoulder axiom, we may assume that we are in the case in
which for each i € {0, 1} there are oy; < 8, M, € J\fAJrl , and &; such
that ((M;,a; + 1),&) is a Go-thread, min(dz ) = 0N, (i +1 ART
connected Go-thread, and Wz (M;") = M;. To see that (My; €, (I>a+1)
(My;€,P441), we notice that ap = «aq as in the previous argument
and therefore (M ; €, Ppyi1) = (M ;€,Pp,+1). Also, by the same
construction as in the argument in the proof of the shoulder axiom,
we may obtain &, = (((NZ°, pi ),(Nllo,p1 ) i < mg) and & =
(((Nél,po ), (Nfl,p1 )) ¢ i < ny) from & and &, so that dom(&}) =
dom(&!) = N, \I/g,(M ) = My, and \I/g,(M ) = M;. But then the
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desired conclusion holds since
\Ilgé (N; €, q)ao-i—l) — (N?O’O; €, (I)a-i-l)

and
Vg i (NG €, Papp1) — (N5 €, Pay)

are isomorphisms. The proof that (W, Ml(M), a+1) € A(G*) when-
ever My, M, are as above and M € Na 1 99 N My, which concludes
the proof that N Aﬁf is a @, 1-symmetric system, is contained in the

argument in the next paragraph.

We now show that G* is closed under copying. For this, suppose

— {(Mo, po), (My,p1)} € G and ¢ = {(My, pb), (M, 1)} € G 1 My
are such that max{pf, pi} < po and ¥y, v, (max{pf, pi}) < p1, and let
us prove that Wy, i (€') € G*. The case when dyy, > 0x follows from
the construction of Gy — in this case of course My, M; € N A go . Now
suppose dy, < On. If e € Gy, then the conclusion follows from the
construction of G, and the hypothesis that Q@ N G; = Q N Gy for every
Q € dom(A(Gp)) N N. In order to finish this proof it thus remains to
consider the case in which e € G3. We then have that there is a+1 > py,
p1 such that the edges {(Mp,«+ 1)} and {(My,a+ 1)} are both in G,.
Hence there are o* < § and {(Mg,a* + 1)}, {(M],a* + 1)} € gy such
that My = Wz (My) and M, = W (M7) for suitable & and & as in
the definition of Gy such that ¥ 0( *) = Vg (a*) = a. Since then
{(M§,a* + 1), (M;,a" + 1)} € G; by stickiness of G; and \Ifgol(e’) €
G N My, e = Wy M*(\IJ’O (€')) € Gy. This finishes the proof in this
case since then Wy, 1, () = Vg (e*) € Go € G*.

Finally, we note that stickiness of G* holds at a+1 (i.e., the unordered
pair {(My,a + 1), (My,a + 1)} € G* for all My, My € N2Y7 such
that 0y, = 0py) since, by the definition of Gy, we can assume that
{(Mo,aa + 1), (M, + 1)} ¢ Go, Onry = O, < On, and hence

{(M07 o+ 1)7 (Ml) o+ 1)} € g?)-
U
Remark 2.9. The set G* in the proof of Lemma |2.8|is precisely Gy G, .

Remark 2.10. The main reason for requlrmg our sets of edges G to
be sticky, rather than simply asking that N ) be a ®, . 1-symmetric
system for each «, it to secure the above amalgamatlon lemma. As
observed by Inamdar, this lemma does not hold if we do not require
stickiness.
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We will call a function F' pertinent if dom(F') € [Succ(x)]<* and for
every a € dom(F), F(a) = (ba, ds), where

e b, € [Lim(w;) X wy]<¥ is a regressive function (i.e., b, () < &
for each 6 € dom(b,));
e d, € |w x H(k)|™¥.

In the above situation, we will often refer to b, and d, as, respec-
tively, b-' and d%. Also, if a ¢ dom(F), bf" and dX are both defined to
be the empty set.

Given an ordered pair ¢ = (F,G), where F is a function and G is a
set of edges, we will denote F’ and G by, respectively, Fj, and G,. Given

a € dom(F,), we will denote bht and dA? by, respectively, b2 and d2.
If ¢ = (F,,G,), where F, and G, are as above, and §§ < k, we let /\/'Bq

stand for NV BA G2 1f & is a set of ordered pairs as above, we denote by
N§' the set (J{N] : ¢ € G}

Given ¢ = (F,,G,), where F, and G, are as above, and given N C
H(r), we denote by ¢ [ N the ordered pair (F;, [[ N,G, N N), where
F, IT N is the function with domain dom(F;) N N such that

(Fy [T N)() = (b, NN, d, N N)

for each @ € dom(F) N N.
Also, given ¢ = (F},,G,) as above, § < wy, and a < K, we denote by

=4,

=3 the set of ordinals & such that (9, @) is G,-accessible from (4, @),
a € dom(Fy), and 0 € dom(b?).

We will now define our sequence (Ps : f < k) and (P35 : S < k).
As we said before, Theorem will be witnessed by P.. We already
defined ®. _

Given a < k, G, will be the canonical P,-name for the generic filter
added by P,. We will denote the forcing relation for P, by I-,, and
the extension relation for P, by <,. '

Given any a < k, and assuming P, has been defined, we let C'* be
some canonically chosen (using ®) P,-name for a club-sequence on w}’
for which the following holds.

o If ®(av) is a P,-name for a club-sequence on wy, then C* = P ().
o If () is not a P,-name for a club-sequence on wy, then C* is
a P,-name for C'; where C' € V' is some fixed club-sequence on
Ww1.
Civen § € Lim(w,), we let C¢ be a P,-name for C*(5) (where C*(4)
of course refers to the 6-th member of C?).

We are finally in a position to define our construction. Let 8 < &, and
suppose P,, &, and &, have been defined for each o < 3. Suppose,
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in addition, that for all @ < a < (3, every Psz-name is also a P,-name.
We aim to define Pg and ®g,4, and also ®4 if § < k is a nonzero limit
ordinal.

An ordered pair ¢ = (F,,G,) is a Ps-condition if and only if it has
the following properties.

(1) G, is a sticky set of edges below § closed under restrictions and
under copying, and such that:
(a) N9 is a ®g-symmetric system:
o) ]gb) for every a <fﬁ, /\./'(i(f‘ﬂ‘ 1}81 3 @a(];-jymgletric system.
¢ 1s a pertinent function with dom(f;) € 5.
(3) For every a < 3, the restriction of q to «, gla, is a condition in
P, where

qla = (Fy T @, Ggla)
(4) If a € dom(F,), then F,(a) = (b2, d?) has the following prop-
erties.
(a) For every ¢ € dom(b%) there is some N € N ; such that
5 = 5N-
(b) For every N € Ng ., and ¢ € dom(by), if b%(6) < o < 6
and B = o + 1, then ¢l IFo on ¢ C2.
(c) For every N € N/, (0,a) € d2 NN and N € N 4, if
5N’ = 5]\[, then (5 \IINN’< )) € dq
(d) For every (d,a) € d4 and N € N 41, 1f 6 < Oy, then there
is some N' € N, such that oy = 0y and a € N'.
(5) Suppose 3 = a+ 1. For every N € N, ,, if = # (), then ¢,

forces that for every a € N there is some M € ./\faG NTar1 NN
such that
(a) a € M and
(b) on ¢ U{Cy, = @ € 2003
(6) Suppose {(No, po), (Nl,,ol)} € G,, a € dom(Fy,) N Ny N po, and
a = \IINO,Nl (O{) < pP1. Then:
(a) a € dom(Fy);
(b) % N No =g N Ny
(C) \IINO,NI “dgl = d% N Nl.
(7) The following holds for every oo <  and every N € N7 4
( ) For allQE +1mN and (50,(51> eb 1f51<5Q<50 and
0o < Oy, then there is some p € P, N N such that ¢|, <. p
and p Ik, dg ¢ 050.

161t is worth noting that clauses (4)(b) and (5) only apply when 8 = a+1. Also,
notice that item (b) in (5) makes sense since, in the situation of this clause, every
Pa-name is itself a P,-name by our working hypothesis.
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(b) For every Q € NI, NN, if E((;gN)'““’a # (), then there is
some p € P, NN such that ¢|, <, p and such that p forces
that for every a € Q there is some M € NS>NT,,1 NQ

with @ € M and d,; ¢ U{C’(?‘Q Ca€ quQTN)I"“’O‘}.

Given Pg-conditions ¢;, for i = 0, 1, ¢1 < qo if and only if the
following holds.

(1) dom(Fy,) € dom(Fy,) and for every o € dom(F,),
(a) b2 C b2 and
(b) d¥ < dZ.
2) G € G,
(3) For every {(No, po), (N1,p1)} € Gy and o € Ny N (po + 1), the
following holds.
(a) If \IINO,Nl(Oé> > 6, then Naql NNy = Ngo N Ng.
(b) If @ € dom(Fy,) N po and Wy, n, () > 5, then:
(i) if b2 N Ny # 0, then o € dom(Fy,) and b% N Ny =
bgo N NO;
(ii) if d2* N Ny # 0, then o € dom(F,,) and d% N Ny =
dg? N No.
We will refer to clause (7) of the definition of Pz holding for ¢ by
saying that ¢ is N-saturated below 5.

Fact 2.11. <g is a transitive relation.

Proof. Let qo, 1, g2 € P and suppose ¢; <g qo and g2 < ¢;. In order
to show that g2 <z qo, it suffices to verify (3) as all other clauses are
trivial. For this, let {(No, po), (N1,p1)} € Gy, @ € No N (po + 1), and
a = Uy, v (@), and let us assume that & > 5. We will prove that
N2 N Ny = N© N Ny. (The argument taking care of (3)(b) is the
same.)

Since G, € G, € Gy, by (3)(a) in the definition of g2 <s ¢; we have
that N2 N Ny = N9 N Ny. Since N9 N Ny = N2 N Ny by (3)(a) in
the definition of ¢; <g o, we have that N2 N Ny = N N Ny. Putting
these two equalities together it follows that N2 N Ny = N N N,. O

We still need to define ®444, and @5 if f < K is a nonzero limit
ordinal.

Let IF; denote the restriction of the forcing relation I-g for Ps to
formulas involving only names in H (k). Then we let ®5,1 C H(k)

17Just to be clear, Eg‘gml"“’o‘ is of course the set of ordinals & such that (3¢, @)
is (Gg)|a+1 N N-accessible from (dg, ), & € dom(F,) N N, and dg € dom(bd).
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canonically code the satisfaction relation for the structure
(H(r); Pg, Pg, I-5)

Finally, if 8 < k is a nonzero limit ordinal, we let ®3 be a subset of
H (k) canonically coding (@, : a < ).

We will assume that the definition of (&4 : f < k) is uniform in S.

Finally, we define P, = (J;_.,, Ps-

3. PROVING THEOREM [2.1]

We will now prove the relevant lemmas that, together, will show Py
to witness Theorem 2.1]

Given partial orders P and Q, we will say that P is a weak suborder
of Q in case dom(PP) C dom(Q) and for all pg, p; € dom(P), if p; <p po,
then p; <g po. Thus, P is a suborder of QQ in case it is a weak suborder
of Q and for all py, p; € dom(P) we have that if py <g po, then p; <p po.

It is clear that if P is a weak suborder of QQ, then every P-name is
itself also a Q-name.

Our first two lemmas are obvious.

Lemma 3.1. For all o < B < Kk, P, is a weak suborder of Pg.ﬁ

On the other hand, it is not true in general that for all o < 3, P, is
a suborder of PBH

Lemma 3.2. For every 8 < k, Pg and =} are uniformly (in 3) defin-
able over the structure (H(k); €, ®pi1) without parameters.

Given partial orders P and Q, we will say that P is a weak complete
suborder of Q in case P is a weak suborder of Q and every predense
subset of P is also predense in Q (i.e., if D C PP is predense in P, then
for every ¢ € Q there are p € D and r € Q such that r <g p and
r <g q). Also, we will call a sequence (P, : o < \) of forcing notions a
weak forcing iteration if for all a < 3, P, is a weak complete suborder
of ]PB'

Given partial orders P and Q such that P is a weak suborder of Q,
we call a function 7 : Q — P a weak projection of Q onto P in case
for every ¢ € Q and every condition p € P such that p <p m(q) there is
some r € Q such that » <g p and r <g ¢. In this situation PP is clearly
a weak complete suborder of Q.

Our sequence (Ps : < k) is a weak forcing iteration. In fact, given
a < f < K, the function sending ¢ € Pjs to ¢|, is a weak projection

18This lemma shows, in particular, that for all a < 3, every P,-name is also a
Ps-name, and hence that our construction (Pg : 8 < k) is well-defined.

198ee Remark
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of Pg onto P,. This is an immediate consequence of the following
lemma, the proof of which is straightforward thanks to clause (3) in
the definition of the extension relation <,.

Lemma 3.3. Let o« < 8 < K, let ¢ € Pg and r € P,, and suppose
T <o qla- Then

(FqUFrvgqur)

is a condition in Pg extending both q and r in Pg.

Given a < 8 <k, q € Pg, and r € P, extending ¢|,, we write ¢ ®r
to denote the common extension

(FqUFragqur)

of ¢ and r defined in the statement of Lemma [3.3]
Given an edge {(Moy,v0), (M1, 71)}, we will write

<{(Mo, %), (M, 71)}>

to denote the C-least set of edges containing {(Moy, o), (M1,71)} and
closed under restrictions, i.e, the set

{H{(Mo, ap), (M, 01)} = ag € MoN (o +1),01 € MiN (71 + 1)}

Remark 3.4. As we have just seen, our construction is a weak forcing
iteration, and in fact, given any a < g < k, the function sending
q € Ps to qla is a weak projection of Ps onto P,. However, it is not an
iteration in the usual sense. Actually, it is easy to find ordinals a < 3
and conditions gy, ¢1 € P, such that ¢; <z gy and yet gy and ¢; are
actually incompatible in P,. For example, for some high enough [, we
can consider Pg-conditions gy = (0, Gy) and ¢; = (0, Gy), where

e Go = ({(No, po), (N1, p1)}),
e (G, is the union of
— Go,
— ({(M, po)}) and
— {Wnon (M), 1)} 2 7 € Wy n (M) Nopr},

and where pg < p;, M € Ny, (M, po) is a model with marker, and
Unon (po) > p1. Let @ = p1. Then ¢¢ <g qo but ¢ and ¢ are
incompatible in P, since every r € P, such that r <, qo, ¢ would
have to be such that M € N} (since it would extend ¢;) and M ¢ N7

(since it would extend gy and since Wy, v, (po) > p1)-

The following lemma will be used in the proofs of Lemmas|3.11] and

0. 16l
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Lemma 3.5. Let 3 < k and q € Pg. Suppose {(No, po), (N1,p1)} € G,
a € NoNpy, @ € Ny is a Py-name, p(x) is a formula in the language
of set theory, (g | No)la € Pay and (q | No)la IFa ¢(a). Suppose
o = Wy, Ny (@) < pi. Then Wy, ((q [ No)la) = (¢ T Ni)lax € Par,
‘IJNO,Nl(d) is a Py+-name, and (q le) o Fgx @(‘I’No,Nl(d))'

Proof. By Lemma (3.2 and since
\I/N07N1 : (NO) 67 ®Oé+1) — (N17 E, (I)a*+1)

is an isomorphism, we have that Wy, n, ((¢ [ No)|a) is & Pa+-condition
and Wy, v, (@) is a Py--name. And since (¢ [ No)la IFo ¢(a), we also
have that

‘IJNO,Nl((q f N0)|a) € Pux

and

‘IJNO,Nl((q [ N0)|a) IFgx 90(\1}1\707]\71 (CL))
again by Lemma [3.2] and the fact that

\IJN07N1 : (NO’ €7®O(+1> — (N17 E7®OZ*+1)

is an isomorphism. Finally, clause (6) in the definition of condition,
and the closure of G, under copying, together entail that

‘PNO,Nl((q f N0)|a) = (q TN1)

a* -

O

3.1. Properness and N,-c.c. The goal of this subsection is to show
both the properness and the Ry-chain condition of all members Pg of
our construction. Our first lemma shows, given a Pg-condition ¢ and
an edge {(No, po), (N1, p1)} below [ such that ¢ € NoN Ny, how to add

{(No, po), (N1, p1)} to q.

Lemma 3.6. Let § < K, ¢ € Pg, and let {(No, po), (N1,p1)} be an
edge below 8 such that ¢ € Ny N Ny. Let G* be the union of G, and
({(No, po); (N1,p1)}). Then g* = (F,,G*) is a condition in P extend-
mg q.

Proof. This is immediate since G* is the C-minimal sticky set of edges
closed under restrictions and such that G, U {(No, po), (N1,p1)} € G*.
O

The proof of the following lemma is the same as that of the previous
lemma.

Lemma 3.7. Let §* < K, ¢ € Pg, and N < H(k) such that N € Tz,
for every € N N B*. Suppose ¢ € N. Then there is an extension
q" € Pg- of q such that {(N, )} € Gg» for every € NN (*.
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It will be convenient to prove the Ny-chain condition and our main
properness result in the same lemma, by a simultaneous induction.
This will be the content of Lemma [3.11] Before getting there, it will be
useful to introduce some pieces of notation and some technical lemmas.

The following lemma, which is immediate, asserts a useful interpo-
lation property of the extension relation.

Lemma 3.8. Let § < k, ¢ € Pg, and N € Nj. Suppose q | N € Pg,
and let p € Pg NN be a condition such that ¢ <gp. Then q <gq [ N
and q | N <g p.

Lemma 3.9. Let B <k, ¢ € Pg, and N € Nj. Then q [ N € Ps.

Proof. We prove, by induction on a < j3, that
(g I Nl = ((F [T N) T e, (Gg N N)a)

is a condition in P,.

Clause (1) in the definition of condition holds for (¢ [ N)|, due to
the fact that if A is a symmetric system and M € N, then N N M
is also a symmetric system. Clauses (2), (6) and (7) are trivial, and
clause (3) follows from the induction hypothesis. All subclauses in (4)
except for (4)(b) are trivial. Finally, (4)(b) holds by clause (a) in the
definition of N-saturatedness below [ together with Lemma [3.8] and
(5) holds by clause (b) in the definition of N-saturatedness below
together with, again, Lemma [3.8| O

We will also need the following technical lemma, which is an imme-
diate consequence of Lemma [2.8

Lemma 3.10. Let « < 3 < K, ¢ € Ps, N € Ny, t € PsN N,
and suppose ¢ | N € Pg andt <g q | N.H Suppose for every @ €
NAGI NN, QNG =QNG,. Letp € P,, and suppose p <4 qla and
P<atla. Letqd =q®pandletG =Gy &G Then G is a sticky set of
edges closed under restrictions and under copying and such that MA(Q)
15 a ©o-symmetric system and /\/’aﬁ(f) 1S a Poiq-symmetric system for
every a < f3.

Proof. This is by an application of Lemma [2.8 with G, and Gy, where
t'=td(plN). O

Given a set G of edges and a pertinent function F' such that dom(F") C
Jdom(A(G)), we define the closure of F' via edges coming from G to be

20The hypothesis that ¢ | N € Pg is actually not needed; if we drop it, then
t <g q | N needs to be replaced by a hypothesis to the effect that the relevant
forms of clauses (1) and (2) in the definition of <g hold between ¢ and ¢ [ N.



26 D. ASPERO AND M.A. MOTA

the function F™* with domain the set X of ordinals of the form Wg(a),

—

for some a € dom(F') and some connected G-thread (o, E), defined by
letting F*(@) be, for every & € X, the ordered pair (b5, dL"), where:
o VE" =0pEUbE / where b is the union of the collection of sets
of the form Wz“p%, for some a € dom(F) and some connected
G-thread (o, £) with a = U s(a)
o dI" = df U dL’, where df’ is the union of the collection of sets
of the form Wz“d, for some o € dom(F) and some connected

—

G-thread (o, &) with & = Vg(a).
We will denote this function F* by clg(F).

Also, given pertinent functions Fy and F; and given a € dom(Fp) N
dom(F}), let Fy(a) + Fi(a) denote

(bEo Ut afo udth).

We will then denote by Fy+F} the function F' with domain dom(Fp)U
dom(F}) defined by letting
e F(a) = F.(«) for all € € {0,1} and a € dom(F.) \ dom(F;_,)
and
o F(a) = Fy(a) + Fi(a) for all @ € dom(Fy) N dom(F}).

Given a countable elementary substructure N of H(k) and a Pg-
condition ¢, for some § < k, we will say that ¢ is potentially (N, Pg)-
generic if and only if for every maximal antichain A of Psz such that
A € N and every ¢’ € Ps such that ¢ <z ¢ there is some r € A and
some ¢* € Py such that ¢* <g r and ¢* <g ¢’ for some Bt > B. Note
that this, even in the stronger version in which B! is required to be
B, is more general than the standard notion of (IV,P)-genericity, for a
forcing notion P, which applies only if P € N. Indeed, in our situation
Pg is of course never a member of N if N C H (k).

We are now ready to prove the main lemma in this subsection.

Lemma 3.11. The following holds for every 8 < k.
(1) Ps is Ny-Knaster.
(2) If B < K, then for every ¢ € Ps and N € NN Tsp, q is
potentially (N, Pg)-generic.

Proof. We prove (1) and (2) by simultaneous induction on § < k.
We start with the proof of (1). We prove that if (¢, : v < w9) is a
sequence of Ps-conditions, then there is I € [wy]*? such that g, and

21Recall that bE is defined to be @ if @ ¢ dom(F). And a similar remark applies
to the next bullet point.
22\115“175 is of course b | min(dz).
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qv, are compatible in Pg for all vy, vy € I. Let M be, for each v < ws,
a countable elementary submodel of H (k™) such that 55, q, € M and
let M, = M} N H(k).

By CH we may find I € [wy]™ and some countable R such that
M,, N M, = R for all distinct vy, v; in I. Again by CH, and after
shrinking [ if necessary, we may assume in addition that, for some
n, m < w, there are, for all v € I, enumerations (N} : i < n) and
(& : j < m) of Nj and dom(F,,), respectively, such that for all
vy # vy in I there is an isomorphism ¥ between M, and M,, fixing
M,, N M,,, where, given any v € I, M, is some canonically chosen
structure with universe M, coding R, (N} : i <n), G,,, (§ : j <m),

(b, dE) = j <m), and 5N M,.

We may moreover assume that (a,,;€,m,“R) = (a,;€,m, “R),
where «a,, € w; is the Mostowski collapse of M, N Ord and =, is
the corresponding collapsing function. But then we have that ¥ is the
identity on R N Ord. This yields that W is the identity on R N H (k)
since the function ¢ : kK — H (k) is surjective.

Let us now pick vy # 14 in I. We will prove that
q" = ((Fy + F4,): (Gay ® Gau, ) U { (M, 8), (Mo, 5)}))

is a condition in Py extending both ¢, and g,,. For this, we will prove,
by induction on o < 3, that

¢ lo = ((Fquo + F(Iul) [, (gquo D gq,q)’a U ({(M,, 8), (M,,, B) })]a)

is a condition in P, such that ¢*|o <a Gl and ¢*|0 <o @y |a-

Clause (1) in the definition of P,-condition holds thanks to Lemma

together with Lemma [2.7in the case a < 5. Clause (2) is trivial
by construction of the function Fy, + Fp, , and (3) is true by the
induction hypothesis. All subclauses of (4) except for (4)(b) are true by
construction of F, + F,,, and (4)(b) holds by the induction hypothesis.
(6) follows from the fact that ¥ is an isomorphism between M, and
M., and (7) is immediate from the construction of ¢* and the present
induction hypothesis.

Finally, for clause (5), suppose a = ag + 1. It is enough to prove
that if N € N2, EgNID‘OH’O‘O # 0, a € N, and q € P,, is such that
7 <ap G*|ag, then there is some ¢’ <,, q and some ]\{ €N NTopr1 NN
such that a € M and ¢ Iy, 0y ¢ U{CY, - a € EgN‘aO“’ao}.

We may assume that oy € M,, (the proof when oy € M,, is com-

pletely symmetrical to the proof in the present case). Let us first con-
sider the case when ag < U(ap). Let ¢ <o, g and M € NZ N Ty 1NN
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such that a € M and
q/ H_a() 5M ¢ U{C?N s c E((SCIIJONQOJFLQO}

o « fret —\qvg )| e
Such ¢’ and M exist since, if = l 0F1E0 \:g‘jvo)' 0FLH0 £ (), then we

have that :g:l)maom’ (o) #* @ (since ap < Y(ap)), and therefore

—\qy e} pre? . . «
:g?vo)l 0P £ () as W is an isomorphism between M,,, and M,,. Let

_ —q" 1,00 \ —(q 1,00 . . . .
a € :5N|a°+ \:C(;N”O)l‘”ﬂr . We will be done in this case if we can

show that ¢’ IF,, oy ¢ C’?‘ . Let a, = ¥~(@) and let us note that

a, < o since @ < U(ayp). Since also a, € H((Sq"o)‘aoﬂ’ao, we have that

q Foy O ¢ C’g‘N Suppose now that a, < @ (the case @ < «, is
proved similarly, by reversing the roles of M,,, and M,, in the following
argument). Now we note that {(M,,, a.), (M,,,a)} € G, and therefore,
by (2) of our induction hypothesis for a, ¢'|5 is potentially (M,,, Ps)-
generic. Hence, for every £ < dy, every r <5 ¢ is Psi-compatible,
for some a' > &, with some condition in M, deciding whether or not
§ ey,

Claim 3.12. ¢ Ik, C5: = Cg..

oN

Proof. Let r <5 ¢, £ < 6y, suppose r IF,, € € ng and let us show
that r I, § ¢ C5 (arguing symmetrically we can show that if r Ik,
€ ¢ C’f‘ , then r Iff,, & € C’O‘) Let s € M,, be a Pgi-condition, for
some o/f > @, which is compatible with r in P4+ and decides whether

or not £ € 05 Since obviously also r Ik & € C(;N, we must have
that s IF51 & € Cf, and since Cf, is a Ps-name, we in fact have
that s[5 Ik § € C§,. Let ¢” be a common extension of r|; and s4
in Ps. Since {(M,,, o), (My,, @)} € Ggr, ¢" extends Wi, v, (s|a). But
Unon, (8la) IFa, € € Cg‘N* by Lemma ﬁ, from which it follows that
q" ko, & € C5z. Since ¢']a, <a we in particular have that
T Far € & C*g‘;, and therefore r I}‘ao § ¢ Ca* (if riky, € ¢ C?*, then
o IFa, § & C5 since C is a P,,-name). [

The above claim finishes the proof in this case since ¢’ IF,, dnr ¢ C’?N
The second case is when W(ag) < ag. Since we may of course assume

that :Z oo \ s qyO)laOH “ 2 (), we in fact have that =; ‘QOH oo \

q 1,0 .
ug;o)'%* #0, so0 1t makes sense to define o as the maximum ordinal

in H((Squl)|a0+17‘1/(a0)‘
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. —q"|a et — vy )| el .
Since :gNI 010 \:((;leoﬂ 0Ft%0 £ (), there is some v € R such that

(6n,7) is Gg,,-accessible from (dx, ap) and G, -accessible form (dy, o).
Using suitable instances of the shoulder axiom as in the proof of Lemma
we may then find sequences

€0 = (((NG", p5"), (N1, ™)) = i < o)
and

& = (N5, 5" (NT, pih) =i <)
such that (ag, &) is a connected Gq,,-thread with Wz (ap) = 7, (v, &)
is a connected G, -thread with Wz (ag) = al, m1n(5 ) = 0N, N =
N, and N’ := Nﬁf is such that o = 5N Letting then € be the
concatenation of & and 51_1, we have that («, £ ) is a connected Gg-|, -
thread with Wz(cg) = ay. Since N’ € N, by an instance of clause
(7)(b) in the definition of condition for ¢,, together with Lemma [3.3]

we may find ¢’ <,, ¢ and M’ € N& N T, 11NN’ such that Ug(a) € M’
and

q/|a1 H_Oq 5M/ Q_f U{Cg CaE H§QV1)|01+1,OA1}

Let M = \I/gl(M’) € N and let us note that M € N2 N To41 NN
and a € M. It thus suffices to prove that ¢’ Ik, oy ¢ C5N for every

'_‘q @ e — quq )l v .

a €= l oM If § € Hg 1log+1:¥(20) , then we are clearly done since
qv, e qv WU (a

then (0] < Q. Hence we may assume a € \—'((; 0)‘0&0-&-1 0 \‘_‘ N1)|a0+1 ( 0)‘

Let a. = ¥(@) < oy and let us note that a, € u((;q"l)alﬂ’al. It thus

follows that ¢'|n, IFay, Onr & CO‘*. But now, arguing as in the proof
of Claim [3.12] using the fact that {(M,,,a),(M,,,a,)} € Gy and the
induction hypotheses for either & or «,, we get that ¢’ I-4 C’(?N = C5r.

This finishes the proof in this case since ¢’ Ik, Iy ¢ Cg\j

Now that we know that ¢*|, is a P,-condition, it is easy to check
that it extends both ¢,,|o and ¢,,| in P,. The only point that is not
completely trivial is the verification of clause (3) in the definition of
the extension relation. But this clause holds thanks to the fact that
qv, and g, carry the same information on R.

We will now prove (2). For this, it is enough to show that if A € N
is a maximal antichain of Pg, then there is some 3 > 3 such that ¢ is

23Note that we can indeed proceed here as in the proof of Lemma 2.7 (more
specifically, as in the verification of the shoulder axiom at the successor stages of
that construction) since the definition of pertinent function implies that ag and ay
are successor ordinals.
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<gt-compatible with some condition in ANN ﬁ The case 8 = 0 follows
at once from Lemma 2.3] so we will assume in what follows that 5 > 0.
By extending ¢ if necessary we may, and will, assume that ¢ extends
some 1y € A.

Let us first consider the case that § = a4+ 1. Suppose 55}3 # (). Let

B be a P,-name for a (partially defined) function on w; x A sending
(n,7) to some condition ¢ € Psz with the following properties (provided
there is some such ¢; otherwise the function is not defined at (n,r)).

(1) tla € Ga

(2) t extends r.

(3) t extends ¢ [ N[
(4) For every Q € N! ., if 6g # g for any Q' € NI, , then
5@ > 1.

(5) For every Q e Ny NN, QNG,=QNG, QNb, =QNbi, and
QNd,=QnNdi.

By conclusion (1) for f — which we have already proved — we know
that Ps has the Ry-c.c. and hence we may assume that B € H(k).
Hence, by Lemma [3.2| and since N < (H(k); €, ®Pp41) and A € N, we
may assume that B € N.

By an instance of clause (5) in the definition of Ps-condition, to-
gether with the openness of & \ C’g‘ in VP for all @ < o and ¢ < w1
there is an extension p € P,, of ¢, for which there are M € NPNT,, 1N
N and n < 7 such that

(1) A, B, q | N € M,

(2) p ko [, 58] N CE = B whenever @ is such that (Jy, @) is G,
accessible from (6, a) and there is (6,8) € b% such that § <
oy <9, and _

(3) plra [ on] VUGS, + @ € =507 = 0.

Indeed, by openness of the relevant sets 0 \ C’? (in the extension by
Ps) we can extend ¢|,, to some py € P, deciding some 1y < dx such that
[0, O] N CF whenever (dy,a) is G -accessible from (6y,a) and there
is (6,0) € bl such that § < dy < § (since there only finitely many such
pairs (0, @)). Then, by an instance of clause (7)(b) in the definition of
condition, this time using the openness of the relevant (finitely many)

24T his is of course the same thing as showing that there is some r* € AN N and
some ¢* € Pg such that ¢* <g r* and ¢* < q.

25We note that, by the assumption that ¢ be N-saturated below 8, ¢ | N is
actually a P,-condition. This, however, is not an essential point; one could in fact
phrase this condition alternatively, without using the fact that ¢ [ N € P,.

26Which follows from the openness of & \ Cg‘ in VP« together with Lemma
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sets of the form oy \ C(?N, we may extend pgy to some p € P, for which

there is some M € N? N 7T,.1 NN and some 7; < dy; such that A, B,
q | N, ng € M and such that p Ik, [n1, dp] N U{C’?N rae=Ett=0.
Then, letting 7 = max{ny, n1}, we get the desired conclusion.

By (2) of the induction hypothesis for « there is some v € M N Py,
r* € MNA, and t* € M N Ps such that u is P,t-compatible with
p for some o' > « and u forces in P, that Bc;‘a (n,7*) is defined and

Bg (n,r*) = t*. This is true since, in the extension of V' by P,, the
existence of such a member of A is witnessed by r, as in turn witnessed
by ¢, and is expressible over (H(x)"[%l; e H(k)",G4) by a sentence
with B and 7 as parameters, both of which are in M). Let also p/ € P,
be such that p’ <.+ p and p’ <,i u.

Let 87 be any ordinal such that 37 > 8 and such that Wy, v, (po) <
BT for every edge {(No,po), (N1,p01)} € G, We will now construct a
condition in Pg <g-extending p’ and ¢* and <gi-extending ¢. For this,
we let ¢ = q@p, G* = Gy ® Gy, and let F* = clg«(Fy + Fix). Let
¢ = (F*,G*). We already know that ¢*|, is a condition in P,, and
using this fact we will show that ¢* € Ps. It will then follow that
¢* <gr* (by Lemma , since t* <z r* and since clearly ¢* [ N <g t*)
and ¢* <gr q (by t* <3 ¢ [ N together with the fact that (5) above
holds for t*, the definition of G* as Gy @ G+, the definition of F™* as
clg-(Fy + Fy), and the choice of 81), which will finish the proof of the
lemma in this case since r* € N.

Clause (1) in the definition of condition holds for ¢* by Lemma [3.10]
noting that, by the choice of t*, we are indeed under the hypotheses
of this lemma. As usual (2) is trivial, (3) follows from the fact that
¢*|a € Pa, and all subclauses of (4) except for (4)(b) are trivial. (4)(b)
follows from our choice of 7 and the fact that ¢* satisfies (5) with respect
to 1, together with Lemma and the induction hypothesis, and (5)
follows from Lemma [3.5] the induction hypothesis, and the fact that
for every Q € N/ 5 such that g < dy and every a € Eg;’o‘ there is some
al € Eg;’a N M such that ¢* I, Og@ = C(?g—by arguments as in the
verification of clause (5) for the amalgamation ¢* in the proof of part
(1), using (2) of the induction hypothesis for o and for the relevant a.
Finally, (6) follows from the construction of F* as clg-(Fy + Fj-), and
(7) is verified in the same way as (5).

The argument when Z§* = ) is exactly the same, except that in the
choice of n we make sure that it satisfies (1) and (2) above, rather than
(1)—(3). Also, in this case there is no need to argue in any M € N; we
can work in N itself.
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It remains to prove the lemma in the case that § is a limit ordinal.
Let « € N N A be such that dom(F,) N [, ) NN = @ and let S1
be defined in the same way as in the successor case. Using (1) of the
induction hypothesis for a;, we may then find r* € ANN, t* € PsNN,
p € P,, and of > « such that

(1) p <ot

(2) t* SB T*,

(3) t <sq | N,

(4) P <at q‘om and

(5) for every @ e NN N, QNG, = QNG

Finally, we amalgamate p, ¢ and ¢* into a condition ¢* € Ps as
in the successor case; specifically, we let ¢ = ¢ ® p, G* = Gy & G-,
F* = clg«(Fy + F}+), and ¢* = (F*,G*). The verification that ¢* is a
condition in Pg such that ¢* <g t* and ¢* <+ ¢ is contained in the
corresponding proof in that case. Since r* € N, this concludes the
proof in the present case, and hence the proof of the lemma. O

Corollary 3.13. P, is proper.

Proof. Let N* < H(k") be a countable model such that ® € N* and
let ¢ € P.NN*. It is enough to show that there is an extension ¢* € P,
of ¢ which is (N*, P,)-generic. Let N = N*N H(k). By Lemma
there is an extension ¢* € P, of ¢ such that {(N, )} € G, for every
b € NNk. Let now A € N* be a maximal antichain of P, and let
¢ € P, be such that ¢ <, ¢*. We will show that ¢’ is <.-compatible
with a condition in AN N.

By the Ny-c.c. of P, (i.e., case k of Lemma [3.11]1)) and cf(k) > wo,
A € N and there is some ordinal § € N such that A is also a maximal
antichain of Ps. Since A is a maximal antichain of P, to begin with,
we may assume, by picking § high enough, that dom(F)\ 5 = 0. By
Lemma (2) applied to 8 there are then 7 € AN N, ¢* € Pg and
BT > B such that ¢* <z r* and ¢* <pt ¢'|g- Let Gy = Gy @ Gy and
F.. =clg,.(F,) and let ¢** = (Fls, Gsx). Since dom(Fy/) C f3, it is then
easy to show, by arguing as in the proof of Lemma that ¢** is a
condition in P, such that ¢** <, ¢. But now we are done since also
q** S,‘i r¥. O

Remark 3.14. Our argument to prove properness does not work for
B < k. In fact it may not be the case that Pg is proper in general for
B < K.

3.2. New reals. The following is proved in [9], Fact 2.6.
Lemma 3.15. Py adds R;-many Cohen reals.
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We will now use clause (6) in the definition of condition (and the
closure of G, under copying whenever ¢ is a condition) to prove Lemma
[3.16], which is a counterpoint to Lemma [3.15 Lemma shows that
P.. does not add more than N;-many new reals, and hence that this
forcing preserves CH (cf. the proof of Proposition 2.7 in [9] or the proof
sketched in the introduction).

Lemma 3.16. (Few new reals) P, adds not more than ¥y-many new
reals.

Proof. Suppose, towards a contradiction, that there is a P,-condition
q and a sequence (7,),<u, of P,-names for subsets of w such that

q H‘K 7."1, 7é 7'“,,/
for all v # /. We will find an extension ¢* of ¢ together with vy # 14
such that ¢* I~ 7,, = r,,, which will be a contradiction.

By P = Ug., Ps, we may fix 3 <  such that ¢ € Pg. Let v < wy
be given. By Lemma (3.11(1) and, again, the fact that P, = U5<,i Ps,
we may assume that 7, € H (k) and we may find 5, < k above § and
such that 7, is in fact a Pg,-name for a subset of w.

For each v < wy let N < H(k™) be countable and containing ¢, P,
7, and B, and let N, = N} N H(k).

Using CH we may find vy # 14 in w, such that

(NVo; €, ¢ Ty, {BV0}7 (I)ﬁuo-i-l)
and

(N €,4, 70,5 {8 1 (I)/J’ul-l-l)
are isomorphic structures. In particular,

€ = {(Nl/oaﬁllo + 1)7 (Nl’17ﬁl’1 + 1)}

is then an edge.

Let us assume that 3,, > (,,. By Lemma we may find an ex-
tension ¢ € Pg, of ¢ such that e € Gy« and Fy- = Fy. Let now
q € Ps,,, be any extension of q-| 5,, and suppose, towards a contradic-
tion, that ¢' IFg, n € 7,,Ar,, for some n < w. Let us assume that
q/ ”‘/31,0 n e 7‘”,/0 \f“ul.

By Lemma w@), q*|s,, is potentially (N,,,Ps, )-generic. Hence,
there are 3§ > f3,, and ¢’ € Ps.y» 4" <gi ¢, such that ¢" <g, p
for some p € N,, N Pg, such that p IFg, n € Ty, We know that
(¢"|3,,) I Nug € Pg,, (by Lemma 3.9) and (¢"[g,,) | Ny <g,, p (by
Lemma [3.8). We then have that

(q”|BV0) r NVO H_ﬁuo n e 7:1’/0’
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and therefore (¢"[s,,) [ V., € Pg,, and

(q,/|61/1) r NVl “_ﬁul n e qjNuoyNul (7:"/0)

by Lemma . Again by Lemmas [3.9 and , we have that ¢"|s,, <s,,
(¢"g,,) I Nuy, and therefore ¢"|s, IFs, n € ¥y, N, (fyo).m But this
yields a contradiction since Wy, n,, (Fu) = 70,

The argument in the case that ¢’ I-g, n € 7, \ 7, is symmetrical
to the proof in the previous case; in that case, we take r € N,, N Pg,
such that r kg, n ¢ 7., [ O

Given o < k and a P,-generic filter G, let
DG ={on : Ne N7}

Let also D, be a P.-name for DS
We now prove the other conclusion in Theorem [2.1]involving cardinal
arithmetic.

Lemma 3.17. P, forces 2% = k.

Proof. In order to prove that IFp_ 2% > k, it suffices to show that P,
forces that Dao \ DCyl # () for all ag < ay. For this, let ¢ be a Py-
condition, which we may assume is such that oy € dom(F), and let
N € [H(r)]™ be a sufficiently correct model such that ¢ € N. By the
same argument as in the proof of Lemma [3.6| we may find an extension
q € P, of g such that N € N§;+1 and NV | =N .. Let 6 <y be
above &y for every M € N ., and let ¢* € P, be the extension of ¢
resulting from adding (6, 6x) to dZ . Then ¢* forces that 6 € Doy \Da, .
Since q € P, was arbitrary, this density lemma shows that P, forces
D, \ Do, # 0.

Finally, a simple counting argument of nice P,-names for subsets
of wy (s. [I7]) using the Ny-chain condition of P, and the fact that
[Pt = k™ = Kk shows that P, forces 2™ < k. O

3.3. Measuring. The following lemma completes the proof of Theo-

rem [2.11

Lemma 3.18. P, forces Measuring.

Proof. Let G be Py-generic and let C = (Cs : § € Lim(w,)) € V[G]
be a club-sequence on w;. We want to see that there is a club of w;
in V[G] measuring C. By P, = U, Pa together with the Ny-c.c. of

2TCf. the argument in the verification of clause (5) in the definition of condition
for the amalgamation ¢* in the proof of Ny-c.c. from Lemma
28Compare this proof with the proof of Claim
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P.., we may assume that, for some oy < k, C = C¢ for some Po,-name
C e H (k) for a club-sequence on w;. Again by the Ns-c.c. of P, and the
unboundedness of {a € Succ(k) : ®(a) = C} in &, we may fix some
o > g in Succ(k) such that ®(a) = C. We then have that ®(a) is a
P,-name, and by Lemma it is in fact a P,-name for a club- sequence
on wy. Hence, we then have that €' = ®(a)g. We will see that (Dy)¢
is a club of w; measuring C.

First of all, it is easy to see that D, is forced to be unbounded in
wi. In fact, given any condition ¢ € P, and any sufficiently correct
countable N < H(k) such that ¢, « € N, we may find by Lemma
an extension ¢* € P, of ¢ such that N € N, and every such
condition forces that oy € D,.

Claim 3.19. DY is closed in w;.

Proof. 1t suffices to prove that if § € Lim(w;) and g € P, are such that
g forces 6 to be a limit point of D,, then there is some N € N? a1 Such
that 5]\[ = 4.

Suppose, towards a contradiction, that ¢ € P, and § € Lim(w,) are
such that g forces § to be a limit point of D,, but there is no N € N7, ,
such that 6y = 6. We may extend ¢ to a condition ¢’ obtained by
adding (0, 6) to d4, where § < § is above &, for every M € N, | such
that 0y < 0, and taking copies under Wy, n, as dictated by relevant
edges {(No, po), (N1,p1))} € G,. But that yields a contradiction since
then ¢’ forces, by clause (4)(d) in the definition of condition, that DyNd
is bounded by 0. U

Given any ¢ € G such that o € dom(F,) and any limit point 6 € DY
if (9,0) € b2 for some § < &, then DN (4, 6) is disjoint from Cs. Hence
in order to finish the proof of the lemma it is enough to show that if
g € G is such that o € dom(F,), N € NZ,, and there is no ¢ € G
extending ¢ and such that 6y € dom(b? ), then a tail of DS is contained
in C(;N.

So, let ¢ be a condition with a € dom(F,) and let N € N7 ; be
such that 6y ¢ dom(b?) for any ¢’ € P, extending q. It suffices to find
an extension ¢* of ¢ in P, and some 0 < Oy with the property that
if ¢ € P, extends ¢* and M € N a1 1s such that § < 6y < Oy, then
qlo o 50r € CF,.

We will assume that = ”q|““’ # ()—the proof in the case Egl‘v’“’a =0
is a simpler version of the proof in this case. Let ap = max(Z§"),

which is well-defined since () # Egl\‘;“’a C =5 As usual, we may
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find a sequence €& = (((Ni, pi)), (N, p!)) : i < n) such that (o, &)
is a connected G,-thread with min(dz) = oy, Yg(a) = ag, NJ = N,
NP e NZ .1, and dnp = dn.

Claim 3.20. There is some extension qy € P, of q, together with some
a € N, such that qy forces in P, that if M € /\/'C% N Tagt+1 N NT,
Us(a) € M, and

o ¢ U{C?N Ca € :g’o‘o}
then oy € C'(‘;’N.

Proof. Let us assume that the conclusion fails. Given any extension ¢’
of ¢ and any a € N, by an instance of clause (7)(b) in the definition of
condition for ¢ln,+1 together with Lemma [3.3] there is some ¢” <, ¢’
and some M € NZ' N T, 1 N N} such that Ug(a) € M and

" lao IFao Onr ¢ U{C?N o€ By it

By our assumption, we then have that ¢”|a, Ve, Om € C‘;N. Hence,
every such ¢” forces oy ¢ Cf. . We have thus seen that g forces that

for every a € N there is some M € /\/'f(f N Tag+1 N N7 such that
Us(a) € M and

onr & U{CéN CaeERTu{cs}

Let now & < dy be above ¢ for every Q € N, +1 such that dg < dn
and let ¢* be the result of adding (6x,d) to b2 and closing under rel-
evant isomorphisms Wy, n,. Then ¢* is a condition in P, extending
q (all clauses in the definition of condition except for (7)(b) are im-
mediate, and (7)(b) follows from Eg;l““’a \ {a} = Egk‘“’a C =5 and
the property of ¢ we have just proved), which is a contradiction since

oy € dom(b). O

Let g and a € N be as in Claim [3.20] Let § < oy be above dq for
every Q € N, such that dg < o and let ¢* be the extension obtained
by adding the pair (§, a) to d? and closing under relevant isomorphisms
U No,Ni -

We now show that ¢* and 0 are as desired. For this, suppose ¢’ € P,
extends ¢* and M € N a1 1s such that § < dy < dny. By an instance
of (4)(d) in the definition of condition for ¢, we then have some M’ €

Ng'H such that 6, = 6y and a € M’. By the shoulder axiom for

Ng'H there is some N’ € /\/’qJrl such that oy = 0 and M’ € N'. Then
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M" = U n(M') € NY, NN and a € M” since Unin(a) = a as
a€ NN N Since M" € N?,, N N, we then have of course that

q,|a ”_a 5M” ¢ U{CSN Cace Eg;\?o}

from which it follows by the choice of a that ¢|, Iy dym € C*;;N. This
finishes the proof since dy;» = dpy. ]

3.4. On adapting the construction of Theorem to other
contexts. It will be sensible to finish this section with some words
addressing the issue of what goes wrong if we try to modify the present

—

forcing so as to force CH together with Unif(C'), for some given ladder
system C' = (Cj : 0 € Lim(w;))—as we mentioned in the introduction,
the conjunction of these two statements cannot hold. One could in fact
try to build something like a sequence of partial orders (Pg)s<, in our
construction in such a way that, at every stage a < k, we attempt to
add a uniformizing function on C for some colouring F : Lim(w,) —
{0, 1} fed to us by our book-keeping function ®. Thus, rather than the
present pairs (b, d), we would plug in conditions for a natural forcing
for adding such a uniformizing function with finite conditions.
Everything would seem to go well—and in particular our construc-
tion would have the Ny-c.c., would be proper, and would preserve CH—
except that, because of the copying constraint expressed in the corre-
sponding version of clause (6) in the definition of condition, it would
not be able to force Unif(é). The reason is that we would not be
in a position to rule out situations in which there is a condition ¢
with, for example, an edge {(No, po), (N1,p1)} in G, for which there
is some a € Ny N po such that the colour of F(a) at dy, is forced
to be, say, 0, whereas the colour of F(@) at dy, is forced to be 1
(where @ = Wy, v, (@) and where F(£) denotes of course the name for
the colouring to be uniformized at stage & of the construction). The
requirement, imposed by the current version of clause (6), that any
relevant amount of information below dy, on the generic uniformizing
function at the coordinate o be copied over to the coordinate &, would
then make it impossible for these generic uniformizing functions to be
defined on any tail of Cs, . This type of problems does not arise when
forcing Measuring due to the more lenient nature of the ‘guessing’ in
this case; if we cannot get the club to eventually stay outside a given
Cs, then it has to eventually get inside (see the density argument in
the proof of Lemma [3.18). The fact whether one or the other is the

’ ’
@o —q ‘a+17a

° rather than =2 °%° or =
N N

29Note the presence in this expression of Eg]’?
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case is determined by the specific club-sequence being measured (and
by the ‘shape’ of the surrounding condition, of course).

It may also be worth pointing out that the type of situation des-
cribed above is a source of serious obstacles towards trying to force any
reasonable forcing axiom to hold together with CH using the present
methods. To see this in a particularly simple case, suppose, for ex-
ample, that (Qg)s<s is exactly as our present construction (Pg)s<y,
except that at each stage we force with Cohen forcing. This construc-
tion enjoys all relevant nice properties that (Ps)s<, has. On the other
hand, Q, cannot possibly force FAy, (Cohen), as it preserves CH. Let-
ting a* < ~ be such that all reals in V<= have already appeared in
V< if @ < Kk is above o, then the real constructed by the generic
at the coordinate o will actually fail to be Cohen-generic over V Qe*;
in fact, for every condition ¢ € Q, such that o € dom(Fj) there will
be a condition ¢’ extending ¢ for which there is connected G,-thread

—

(a,&) such that & := ¥g(a) < a*. The information at the coordinate
@ contained in any extension of ¢’ will then have to be copied over
into the coordinate «, which in this situation means that the real r,
constructed at the coordinate « is identical to the real at &, and this
obviously prevents r, from being Cohen-generic over Ve~
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