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ABSTRACT. We study the spectrum of forcing notions between the iter-
ations of o-closed followed by ccc forcings and the proper forcings. This
includes the hierarchy of a-proper forcings for indecomposable countable
ordinals «, the Axiom A forcings and forcings completely embeddable
into an iteration of a o-closed followed by a ccc forcing. For the latter
class, we present an equivalent characterization in terms of Baumgart-
ner’'s Axiom A. This resolves a conjecture of Baumgartner from the
1980s.

We also study the bounded forcing axioms for the hierarchy of a-
proper forcings. Following ideas of Shelah we separate them for distinct
countable indecomposable ordinals.

1. INTRODUCTION

After the discovery of finite support iteration [15] and Martin’s Axiom
[11], the technique of iterated forcing was dramatically extended through
consideration of iterations with countable support. The classical paper of
Baumgartner and Laver [4] on countable support iterations of Sacks forcing
was developed further by Baumgartner into the theory of Axiom A forcing
[3]. Baumgartner’s Axiom A captures many of the common features of
cce, o-closed and tree-like forcings and is sufficient to guarantee that wq is
not collapsed in a countable support iteration. The more general theory of
proper forcing was later developed by Shelah [14] and has replaced Axiom A
as the central notion in the theory of iterated forcing with countable support.

Together with the introduction of proper forcing, Shelah also considered
the notion of a-proper forcing [14, Chapter V] for indecomposable count-
able ordinals «. Forcings which are a-proper for all countable ordinals are
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called <wi-proper. Ishiu [9] proved that the notions of Axiom A and <wi-
properness are in fact the same, meaning that, up to forcing-equivalence,
they describe the same classes of quasi-orders. This also explained an ear-
lier result of Koszmider [10] saying that Axiom A is preserved by countable-
support iteration.

Baumgartner showed that the analogue of Martin’s Axiom for proper
forcing, called PFA (the Proper Forcing Axiom) is consistent relative to a
supercompact cardinal and it is conjectured that its consistency strength
is exactly that. PFA and the forcing axioms for the classes of a-proper
forcings (written as PFA, ) were later systematically studied by Shelah [14].
However, a still very useful weakening of PFA considered by Goldstern and
Shelah [7] and called BPFA (the Bounded Proper Forcing Axiom) turned
out to have much lower consistency strength, below that of a Mahlo cardinal.
In addition, some important consequences of PFA, such as the Todoréevié—
Velickovi¢ result [19, 5] that ¢ = Ry holds under PFA, were shown to also fol-
low from BPFA [13] (see also [6]). On the other hand, one should remember
that the proof of Todoréevié—Velickovi¢ in fact only uses FA (o-closed * ccc),
i.e. the forcing axiom for the class of forcings completely embeddable into
an iteration of o-closed followed by ccc forcing. We will say that a forcing
is embeddable into o-closed* ccc if it is forcing-equivalent to a forcing which
can be completely embedded into an iteration P () where P is o-closed and
Q is ccc.

Back in the 1980s, when Axiom A and proper forcing were invented,
Baumgartner conjectured that every forcing satisfying Axiom A can be em-
bedded into an iteration of a o-closed followed by a ccc forcing. This would
of course mean that the two classes are the same, up to forcing-equivalence.
Probably, the first motivation came with the Mathias forcing and its decom-
position into P(w)/fin followed by the Mathias forcing with an ultrafilter.
Later, the conjecture was confirmed for the Sacks forcing and other tree-
like forcing notions in [8]. Miyamoto [12] proved it for the iterations of a
ccc followed by a o-closed forcing. Recently, Zapletal proved that in most
cases if an idealized forcing is proper, then it is in fact embeddable into
o-closed * ccc [22, Theorems 4.1.5, 4.2.4, 4.3.26, 4.5.9, Lemma 4.7.7].

We introduce the notion of a strong Aziom A forcing (for a precise defi-
nition see Section 2), which essentially says that the forcing notion satisfies
Axiom A after taking a product with any o-closed forcing. We prove the
following characterization.

Theorem 1.1. Let P be a forcing notion. The following are equivalent

(i) P satisfies strong Aziom A,
(ii) P is embeddable into o-closedx ccc.

Theorem 1.1 is in the spirit of Baumgartner’s conjecture as it shows that
there is a close connection between Axiom A and embeddability into o-
closed * ccc. This characterization, however, cannot be strengthened to the
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one suggested by Baumgartner and Theorem 1.1 leads also to the following
counterexample, which refutes the original conjecture.

Corollary 1.2. There is an Axiom A forcing notion which is not embeddable
into o-closed* ccc. It is of the form ccc* o-closed* ccc.

Given a class of forcing notions S, the Bounded Forcing Axiom for S,
denoted by BFA(S), is the statement that for each complete Boolean algebra
B in § and any collection D of wi-many size at most w; predense subsets of
B, there is a filter on B which intersects each element of D. An equivalent
form of of BFA(S), due independently to Bagaria [2] and Stavi-Va&nénen
[16], states that H(ws)Y is ¥i-elementary in H(w;)V" for any complete
Boolean algebra B in S.

The Bounded Forcing Axiom for the class of ccc forcing notions is equiva-
lent to Martin’s Axiom and the Bounded Forcing Axiom for the class of
proper forcings is exactly BPFA. In fact, there is a whole spectrum of
bounded forcing axioms, namely the Bounded Forcing Axioms for the classes
of a-proper forcing notions (written as BPFA,), where o can be any count-
able indecomposable ordinal. There is also the Bounded Forcing Axiom for
<wy-proper forcing notions, which is (a priori) weaker than all BPFA,. By
the result of Ishiu, it is equivalent to the Bounded Forcing Axiom for the class
of Axiom A forcings, also denoted by BAAFA. A still (a priori) weaker varia-
tion is the Bounded Forcing Axiom for the class of forcings embeddable into
o-closed « ccc. ' We denote this axiom by BFA(o-closed % ccc). Todorcevié
showed (see [18] or [1, Lemma 2.4]) that the consistency strength of BFA(o-
closed  ccc) is the same as of BPFA, i.e. a reflecting cardinal. This implies
that actually all the axioms along this hierarchy have the same consistency
strength.

In [20] Weinert showed that BAAFA is strictly weaker than BPFA, relative
to a reflecting cardinal. In [14, Chapter XVII, pages 837-838] Shelah men-
tions that the forcing axioms PFA,, for indecomposable countable ordinals «
can be separated by the full club guessing principles. Following this idea, we
separate the axioms BPFA, for indecomposable countable ordinals. Here,
however, we consider a hierarchy of weak club guessing principles TWCG,
(for a definition see Section 3) and show the following

Theorem 1.3. For indecomposable ordinals o < 8 < wy the axiom BPFA,
(or PFA, ) is consistent with TWCG,, relative to a reflecting cardinal (or
a supercompact), whereas BPFA,, is inconsistent with TWCGg.

The weak club guessing principles were introduced already by Shelah, who
considered them as a variant of the full (or tail) club guessing principles (cf.
[9]). Theorem 1.3 refines the separation of the axioms PFA, in terms of the
full club guessing principles. We also show the following.

Theorem 1.4. For indecomposable ordinals oo < [ < w1, the principle
TWCGg implies TWCG, and TWCG,, does not imply TWCGg.
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This paper is organized as follows. Section 2 contains the characterization
of forcings embeddable into o-closed * ccc. Section 3 contains the results on
the weak club guessing principles and the bounded forcing axioms for a-
proper forcings.

1.1. Remark. After this work has been done, we have learnt that in the
1980s Todorcevié also derived Corollary 1.2 with different methods from his
results on the S-space problem in [17, Section 2]; that proof has, however,
never been published.

2. FORCINGS EMBEDDABLE INTO 0-CLOSED * CCC

Recall that a forcing notion P satisfies the uniform Aziom A if there is an
ordering <y on P refining its original ordering such that any <(-descending
w-sequence has a <g-lower bound and for any antichain A in P any condition
can be <g-extended to become compatible with at most countably many
elements of A. By a quasi-order we mean a reflexive and transitive relation.

Ishiu showed [9, Theorem 4.3] that, up to forcing-equivalence, Axiom A
and uniform Axiom A are equivalent and describe precisely the class of
<wi-proper quasi-orders. More precisely, he showed that if P is an Axiom
A forcing notion, then there is a quasi-order P’ which is forcing-equivalent
to P and an ordering <g on P’ such that P’ satisfies the uniform Axiom A
via <g. This is a motivation for the following definition.

Definition 2.1. A forcing notion P satisfies strong Aziom A if there a quasi-
order P’, forcing-equivalent to P, with an ordering <y on P’ such that for
any o-closed forcing S the product S x P’ satisfies uniform Axiom A via
<s %X <o.

Any forcing of the form R * @, where R is o-closed and Q is forced to
be cce, satisfies the uniform Axiom A. The ordering <o on R Q is simply
<p x=, ie. (ri,q1) <o (ro,qo) if 11 <g 7o and 71 IF ¢go = ¢1. To see that
<, witnesses the uniform Axiom A, take an antichain A in R * Q and a
condition (rg, o) € R * Q. Pick any R-generic filter G over V through 7
and note that in V[G] we have that {(¢)/G : Ir € G (r,q/G) € A} is an
antichain in Q /G and hence it is countable by the assumption that R I Qs
ccc. Note that for each (¢)/G in the above set, there is only one r € G such
that (r,q) € A, as A is an antichain. Since R does not add new countable
subsets of the ground model, there is a countable A9 C A in V such that
for some condition 7’ € G we have

(%) ' IF{(r,) e A:r e G} = Ap.

Enumerate Ay as {(r],,¢n) : n < w}. Since 79,7’ and all the r/, are in
G, we can find r; € R extending all these conditions. Now we have that
(r1,40) <o (ro,go) and it is enough to check that {(r,q) € A : (r,q) is
compatible with (71, do)} is contained in Ay. But if (r”,¢") € A\ Ay were
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compatible with (71, qo), then forcing with a filter G such that v",r € G
would give that (r”,¢") € {(r,q) € A:r € G}, contradicting (x).

Recall that if A is a complete Boolean algebra and B is a complete Boolean
subalgebra of A, then the projection m : A — B is defined as follows: 7(a) =
A\{b € B : a < b}, where the Boolean operation is computed in either of the
two Boolean algebras.

Now we prove Theorem 1.1. The proof will use an old idea of Groszek [8].

Proof of Theorem 1.1. (ii)=-(i). Suppose P < R x @, where R is o-closed
and Q is forced to be ccc. Without loss of generality assume that P is a
complete Boolean subalgebra of ro(R * Q) and let 7 : ro(R * Q) — P be the
projection. Let

P'={(p,(r,q)) : p € P,(r,4) € R+Q and p A (r,q) # 0},

where the Boolean operation is computed in ro( Rx Q) Consider the function
7'+ P' — P defined as:

' ((p, (r,4))) = p A7 ((r,q))
and define the order <p/ on P’ as follows: (p1,(r1,¢1)) <p (po, (r0,qo)) if
' ((p1, (r1,41))) <p 7 ((po, (ro,qo))). Thus P’ becomes a quasi-order with
<pr. Note that the definition of <p/ implies that the function 7’ is a dense
embedding from P’ to P, hence P’ and P are forcing-equivalent.

Recall that on R * ) we have the natural ordering <g x= (see remarks
preceeding this theorem) to witness uniform Axiom A. Let <y on P’ be
defined as follows: (p1,(r1,41)) <o (po,(r0,G0)) if p1 = po, 1 <gr ro and
r1 IF g1 = go. Now we claim that this <y witnesses the strong Axiom A.

Let S be a o-closed forcing notion. We need to check that S x P’ satisfies
uniform Axiom A via <g x <q. It is clear that S x P’ is o-closed with respect
to <g x <p. Take an antichain A in S x P/, s € S and (p, (r,¢)) € P'. Via
id x 7/ we get an antichain A’ in S x P. As every element of ro(R * Q) is
a supremum of an antichain in R * Q, we can refine the antichain A’ to an
antichain A” such that

(a) every element of A” is of the form (s, (r,¢)) for some s € S and

(r,q) € R*Q,
(b) every element of A’ is the supremum of a subset of A”.
Now, A” is an antichain in S x (R* Q). The latter is the same as (S X R) % Q
(where @, as an R-name naturally becomes an S x R-name). We need the
following lemma.
Lemma 2.2. Let T be a o-closed forcing notion and C' be ccc. Then
T IFC is ccc.

Proof. Suppose not. Let {¢, : @ < w1} be a T-name for an antichain in C.
Since T is o-closed, we can build a descending sequence (t, € T : @ < wy)
and a sequence of conditions (¢, € C': o < wyq) such that

to lF éq = Cao-
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But then {¢, : @ < w1} is an uncountable antichain in C, a contradiction.
O

Now, Lemma 2.2 implies that if G is any R-generic over V, then in V|G|
we have

SIFQ/G is ccc.

This means that R IF “S |- @ is cce”, or in other words, R x S IF Q is ccc.
Since S X R = R x S, by the remarks preceeding this theorem, we get that
<gxRr X= witnesses uniform Axiom A for (S x R) x Q.

Therefore, there are s’ <g s and r’ <g r such that (s, (1, ¢)) is compat-
ible with only countably many elements of A”. By (b) above, (s',7/,¢) is
compatible with only countably many elements of A" and so is (', 7(r/, ¢))
since A" C S x P. Since (s',7(p, (r',4))) <sxp (s',7(r,¢)) and by the defi-
nition of <p/, we get that (s, (p, (r',¢))) is compatible with only countably
many elements of A. We also have

(s, (p, ("', 4))) <5 x <o (s, (p, (r.4))),
hence <g x <q witnesses uniform Axiom A for S x P’. This ends the proof
of implication (ii)=-(i).

(i)=(ii). Suppose P satisfies strong Axiom A. Since embeddability into
o-closed * ccc is invariant under forcing-equivalence, we can assume that the
ordering <( witnessing strong Axiom A is defined on P. We shall construct
a o-closed forcing notion R and an R-name @ for a ccc forcing such that
P < R+ Q. Let R be the forcing with countable subsets of P ordered as
follows: for my, w1 € P countable write m < mg if

e for each p € m there is ¢ € m; such that ¢ <¢ p,
e for each g € 7y the set 7 is predense below q.

Note that R is o-closed. In any R-generic extension the union of the count-
able subsets of P which belong to the generic filter forms a suborder of P.
Let Q be the canonical name for this subset. We will show that P < R * Q
and that Q is forced to be ccc.

Lemma 2.3. The forcing R« Q adds a generic filter for P.

Proof. We show that R forces that the Q-generic filter is P-generic over V.
It is enough to show that for any dense open set D C P and p € P the set

{reR:(nlFp¢Q)V BderpeD Ad<p)}

is dense in R. Take any m € R and suppose 7 IFp € Q There is 7’ < 7 and
p’ < p such that p’ € #’. Pick d € D such that d < p’. Then 7’ U{d} < 7 is
as needed. ([

Note now that for any 7 € R we have
(%) 7 Ik 7 is predense in Q.

Indeed, if 7/ < 7 and 7’ IF p € Q, then there is 7”7 < #’ and ¢ € 7 such that
q < p. Since " < 7, there is r € m and ¢t < r,q. Now 7" U {t} -t <rq.
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We will be done once we prove the following.
Lemma 2.4. R forces that Q is ccc.

Proof. Suppose that A is an R-name for an uncountable antichain in Q.
Assume that A is forced to be of cardinality wi, namely RIF A = {ad: a <
wl}.

Sublemma 2.5. For each m € R and p € 7 there are ©’ < 7, p' <o p such
that p' € ' and a countable A, C P such that

7' I {a € A : a is incompatible with p'} C A,.

Proof. We build an antichain in R x P. Let Cy C R be a maximal antichain
below 7 deciding ag and such that for every p € Cj there is b” € p such that
b? < a, where a € P is such that p IF a = ag. Let Dy = {(p,b”) : p € Cp}.
For £ < wi use the fact that R is o-closed to find a maximal antichain C¢
below 7 which refines all C, for a < ¢, decides a¢ and for every p € C¢
there is b” € p such that 0¥ < a, where a € P is such that p IF a = a¢. Let
D¢ = {(p,b°) : p € C¢}.

Now D = (J¢,, De¢ is an antichain in R x P. To see that it is enough to
check that if & < &1, (po,b”°) € Dg,, (p1,b°') € D¢, and py < pg, then b
and b”* are incompatible in P. Suppose ¢ < b0, bP' and put p = p; U {c}.
Then

plkce @ and ¢ < b, b
and hence p I ag,, ¢, are compatible. This is a contradiction.

Since R x P satisfies uniform Axiom A via < x <q, we can find o < 7,

p’ <o p and a countable subset D’ C D such that

{(p,a) € D : (p,a) is incompatible with (o,p')} C D’.
Let Ay={a€P:3peR (p,a)e D'}. Put 7/ = o U {p'}. O
Take now any m € R. Using Sublemma 2.5 and a bookkepping argument
we find a sequence (m, € R : n < w) such that 7y = 7 and for each n < w

and p € m, there is m, > n, p’ € m,, such that p’ <o p and there is a
countable A, C P such that

(%x) Tm, IF {a € A : a is incompatible with p'} C A,,.

For each p € |J,,.,, mn construct a sequence p, € P such that py = p e
Tm, and if p,, € T, then p,y1 € Ty is such that p,11 <g pn. Let r, be
any condition such that r, <g p, for all n < w..

We define m, as the family of all such 7, for p € (., mn. Note that
7w < mp for each n and by (%) and (%*) we have that

Ty IF U{AP ip € U Tn} is predense in Q.

n<w

This contradicts the assumption that A is forced to be uncountable. [l

This ends the proof of the implication (ii)=-(i). O
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Now we prove Corollary 1.2.

Proof of Corollary 1.2. Recall the example [14, Chapter XVII, Observation
2.12] of two proper forcing notions whose product collapses w;. The first of
them is o-closed and the other is an iteration of the form ccc * o-closed * ccc.
Thus, the latter does not satisfy strong Axiom A but is forcing-equivalent
to an Axiom A forcing, since it is <wi-proper. It is not embeddable into
o-closed * ccc by Theorem 1.1. (]

3. BOUNDED FORCING AXIOMS AND WEAK CLUB GUESSING

Definition 3.1. Let x > w be a regular cardinal, o an ordinal and M =
{M; : € € a} be a sequence of countable elementary substructures of H(x).
We say that M is an internally approachable tower if the following hold:
(i) {M.:e <n} € My, for every n € o with n+1 € a,
(il) My, = U{M: : € < n} for every limit ordinal 1 € a.

As usual, H(k) is the collection of all sets of hereditary cardinality less
than k. We will identify H(x) with the structure (H(k), €, <), where < is
a fixed well order of H (k).

Definition 3.2. Let P be a partial order and « a countable ordinal.

(a) Given ¢ € P and M = {M, : € € a} an internally approachable
tower of countable elementary substructures of H(x) with P € My,
we say that g is generic over M if ¢ forces that G N M. is generic
over M, for every € € a.

(b) P is a-proper if for every sufficiently large regular cardinal k, for
every internally approachable tower M = {M, : ¢ € a} as above
and for every condition p € PN My, there exists ¢ < p such that ¢ is
(M, P)-generic. P is <wj-proper if it is a-proper for each a < wj.

Note that if P is proper (i.e., l-proper), then P is n-proper for every
natural number n. Recall that a countable ordinal f is said to be indecom-
posable if there exists a nonzero ordinal 7 such that § = w” (this is ordinal
exponentiation). Equivalently, 5 is indecomposable if for every v < 3, the
order type of the interval (v, ) is equal to 5. Now, if P is a-proper and
B is the first indecomposable ordinal above «, then P is ~-proper for every
v < B.

Let « be an indecomposable ordinal. We denote by PFA, the forcing
axiom for the class of a-proper forcing notions. By BPFA, we denote the
bounded forcing axiom for this class.

Definition 3.3. An a-ladder system is a sequence A = (Ag: 8 < wy) such
that for each 8 < wy, with a dividing 3, the set Ag is a closed unbounded
subset of § and ot(Ag) = a. We will always assume that (Ag(7) : 7 < o) is
the increasing enumeration of the elements of Ag. We say that an a-ladder
system (Ag: 8 < wi) is thin if for any 8 < wy the set {A, NP :vy € wi}is
countable.
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Definition 3.4. The a-Weak Club Guessing principle, denoted by WCG,,
says that there is an a-ladder system A such that for every club D C w;
there is § € D such that « divides 5 and ot(AgN D) = . The a-Thin Weak
Club Guessing principle, denoted by TWCG,, also asserts the existence of
such an A but with the additional requirement of being thin.

Thin (full) club guessing ladder systems have been considered in the lit-
erature in [21, 9]. Zapletal mentions [21, Section 1.A] that their existence
can be derived from ¢ and shows [21, Section 2] how to force one with a
o-closed forcing notion.

Theorem 3.5. For indecomposable ordinals o < 5 < w1, BPFA, implies
the negation of TWCGg.

Proof. By the 31 (H (w2)) generic absoluteness characterization of BPFA,,
it suffices to prove that for any thin 3-club guessing sequence A there is an
a-proper forcing notion shooting a club in w; which is not guessed by A.

Fix a thin B-club guessing sequence A = (Ay 1y <wi). We may assume
A, = 0 if 8 does not divide 7. Let P be the following forcing notion.
Conditions in P are countable subsets C of w; such that

e (' is closed in the order topology,
e ot(CNA,) < p for each v < wy with 3 dividing 7.

The ordering <p on P is by end-extension. We need to show that P is
a-proper. Let k be a sufficiently large regular cardinal and let <1 be a well-
ordering on H (). Pick an internally approachable tower M = (M., : v < «)
of countable elementary submodels of (H(x), €, <) such that A € My. Put
py = MyNwi. Let p € My be any condition in . We need to find a condition
extending p and generic for the whole tower. For so doing, consider the <-
least w-ladder system B and note that B € Mj.

Say that X C wy is M-accessible if the order type of X is strictly less than
po and X N py € M, for every 7 < a. Note that each A, is M-accessible
by thinness. For each M-accessible X C w; we construct by induction a
decreasing sequence of conditions p(vy, X) for v < a such that for each v < «
we have

(i) p(0,X) = p,
(ii) p(v,X) is a P-generic condition for (Ms: 6 <),

(ili) if y =0+ 1, then p(vy, X) N (Aps UX) CpU{p. : € <0}

(iv) p(vy,X) € M, for successor v and p(vy, X) € M4 for limit ~.

Here My4+1 = H(k). In order to guarantee that (iv) holds, we will also
require the following conditions:
(v) p(v,X) = U, ep, p(By(n), X U A,) for limit -,
(vi) p(v+1,X) = p(v, X) for limit ~,
(vii) if v < « is zero or successor, then p(y+1, X) is the <-least condition
which extends p(v, X) and satisfies (i), (ii) and (iii).

Put p(0,X) = p. Suppose v < a and p(d, X) have been constructed for

all § < . If 7 is limit, then p(v, X) is defined as in (v). If y = § + 1 and
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d is a limit, then p(y, X) = p(d, X). Suppose v = § + 1 and ¢ is zero or a
successor, in which case p(d, X) € Ms. We need to show that there exists a
condition extending p(d, X') and satisfying (ii) and (iii).

Enumerate all dense open subsets of P in Ms into a sequence (D,, :
n < w) (assume Dy = P) and inductively construct a decreasing sequence of
conditions p™ € MsN D, such that p°® = p(8, X) and p"N(A,,UX) = p(5, X).
Suppose p™ € My has been constructed and let "™ = sup(p,). Consider the
function f : wy \ n™ — w; defined as follows: for v € wy \ n™ let ¢ be the
<-smallest condition which extends p™ U {v} and belongs to Dyy1. Then
we define f(v) as the maximum of ¢”. Now let £ C w; be the club of those
points greater than n™ which are closed under f. Note that f and F are in
Mgy, since they are definable from parameters in this model. It follows that

ot(E N ps) = ps > ot(Ap, U (X N ps)).

Choose two elements vy < v < ps of E such that [vg, 1] N (Ay U (XN
ps)) = 0. We can choose p"*! to be ¢*0.

Now the condition J,,.., p" U {ps} is P-generic for M; and for the whole
subtower (M. : ¢ < «) and satisfies (ii) and (iii). Let p(v, X) be the <-
smallest condition with these properties and note that p(y, X) € M, since
this condition is definable (using the order < of H(k)) from p, X N ps and
(M. : € < ~y). This ends the successor step of the inductive construction.
It is immediate that the condition p(a, () is generic for the whole tower
(My 1y < a). O

The following proposition (due to Shelah) appears in [9, Proposition 3.5]
for full club guessing ladder systems. The proof for weak club guessing is
exactly the same. We provide it for the reader’s convenience.

Proposition 3.6. Let A = (A, : v < wi) be a thin B-ladder system and
P a B-proper notion of forcing. If A witness TWCGg, then A witnesses
TWCGyg in any generic extension with P.

Proof. Let E be a P-name for a club and p a condition in P. It suffices
to prove that there exist an ordinal p* and a condition ¢ < p such that
q forces that the intersection of E with Ay« has order type equal to (.
For so doing, let x be a sufficiently large regular cardinal and consider an
internally approachable tower M = (M, : € € w;) of countable elementary
substructures of H(k) such that A, P, E and p are in My. Let F be the
club of those countable ordinals p such that p = M, Nw;. Now, by TWCGg
(applied in V'), there exist p* € F' such that ot(A,- N F) = 3. Note that for
each p € A,» N F, any (M, P)-generic condition forces that p € E. So, it
suffices to prove that there is a condition extending p which is generic for all
elements of the tower M* = (M, : e € A~ N F). Given that P is S-proper,
this can be reduced to proving that M* is internally approachable, which is
true by the assumptions that A is thin and M is internally approachable. [
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Corollary 3.7. For every indecomposable ordinal v < wi the principle
TWCG, is consistent with BPFA., (or PFA, ), relative to a reflecting car-
dinal (or a supercompact).

Proof. We prove only the PFA version. The proof is very similar to the
usual proof of the consistency of PFA, and so we omit the details. We start
with a ground model with a supercompact satisfying TWCG,, (there is one
by the results of [21]). The generic extension that we need is obtained by
a countable support iteration of length a supercompact cardinal, where in
each step of the iteration we only consider names for v-proper partial orders.
Since the countable support iteration of y-proper forcing notions is y-proper
(14, Chapter V, Theorem 3.5] and ~-proper forcing preserves TWCG., we
get a model of both, PFA, and TWCG,. O

Together, Theorem 3.5 and Corollary 3.7 prove Theorem 1.3. The sepa-
ration of the axioms PFA, for indecomposable ordinals a@ < w; appears in
Shelah’s [14, Chapter XVII, Remark 3.15]. We are not aware, however, if the
separation with the bounded versions has ever appeared in the literature, so
we mention it in the following corollary.

Corollary 3.8. For indecomposable ordinals a < f < wi, BPFAgz (or
PFAg) does not imply BPFA,, relative to a reflecting cardinal (or a su-
percompact).

Proof. By Corollary 3.7 there is a model of BPFAg (or PFAg) and TWCGg,
relative to a reflecting cardinal (or a supercompact). It cannot satisfy
BPFA, by Theorem 3.5. O

In the remaining part of this section we will prove Theorem 1.4. We will
need an additional piece of notation. Given an indecomposable ordinal 8 and
a cardinal k < wi, a (B, K)-system is a sequence A = (A} : a € K,6 € wy)
such that for every a and J, with g dividing J, the set A§ is a closed
unbounded subset of § of order type 3. A (3, k)-system A is thin if for any
v € wi, the set {A§ Ny :a <k, €w;}is countable.

Note that a (3, k)-system A can be enumerated as (As : § < wy), but then
we must remember that A; need not be cofinal in §. Such enumerations will
be used in the proof of Theorem 1.4 below.

The principle WCG’E asserts the existence of a (3, k)-system A = (AS -
a € K,0 € wy) such that for every club D C wy, there exists § € D and
a € k such that 8 divides ¢ and ot(A§ N D) = . The principle TWCGH
says exactly the same that WCGE with the additional requirement that A
must be thin.

Lemma 3.9. For any indecomposable ordinal 3, TWCGyg is equivalent to
TVVCGE0 and the same holds for the non-thin versions.

Proof. The two statements have the same proof. We only focus on the thin
versions and we show that TWCGSO implies TWCGg. So, let (A} : n €
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w,d € wi) be a (8, Ng)-system witnessing TWCGSO. We define a thin j-
ladder system (Bs : 0 € wy) as follows. First, for each § divisible by g fix a
cofinal sequence (0, : n € w) C § of order type w. Define Bs = |J{Bj : n €
w}, where By is equal to A} \ 6, . Now (Bs : 6 € wi) is a thin system. To see
this, notice that for each v € wy if § > v, § € wy is divisible by 3, then only
finitely many of the ¢, are below v and hence Bs N~ is a union of finitely
many of the sets A} N\ d,. The fact that (B; : § € wy) witnesses TWCGg
follows directly from the assumption that (A} : n € w,d € wi) witnesses
TWCG}’. O

Now we are ready to prove Theorem 1.4.

Proof of Theorem 1.4. The fact that TWCG,, does not imply TWCGg fol-
lows directly from Theorem 1.3. Alternately, to derive this just in ZFC, one
can start with a model of TWCG, + CH + 2% = Ry and then force with
a countable-support iteration of length wy of a-proper forcings, killing all
B-thin club sequences.

Now we prove that TWCGg implies TWCG,. Assume TWCG,, fails.
We will show by induction on o' € [o, 8] that TWCG,, fails. In fact, we
will show that if A = {As : § € wi} enumerates a thin (o, Np)-system,
then there exists a club D such that for every § € wy the intersection of As
with D has order type strictly less than a. The case o/ = « follows from
Lemma 3.9. Assume o/ > o and fix an enumeration {As : § € w;} of a thin
(a/,Ng)-system A. For each ordinal ¢ find an increasing cofinal sequence
{0, :n € w} C Ajs of limit points of the set As such that the order types of

A'(6,0) = As N &g
and ~
A'(6,n+1) = (As N bpt1) \ On
are indecomposable ordinals greater than or equal to a. Now, consider the
thin system enumeration

A ={A'(6,n): 6 € wi,n € w},

and note that for each indecomposable 7 in the semi-open interval [«, o),
the inductive hypothesis ensures the existence of a club C; such that for
every ¢ and for every n if the order type of A’(4,n) is equal to , then
ot(A’'(5,n) N Cy) < a. Note that if A is thin, then the set of those elements
of A" whose order type is equal to 7w is a (m,Ng)-system. Let C be the
intersection of all the C,. Now define the set B; as follows:

Bgz{én:nEw}UU{A'(é,n)ﬂC:nEw}.

Note that this set has order type at most . Also note that if v < sup As,
then BsN+ is equal to the union of A;N~yNC together with a finite subset of
sup As. Therefore the system B = {Bs : 6 € wi} is thin. Finally, find a club
D C C witnessing that the system B does not guess in the (o, Rg)-sense.
Now D is as desired. O
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4. REMAINING QUESTIONS

There are some questions which this papers leaves open.

Question 4.1. Is BFA(o-closed * ccc) equivalent to BAAFA ?

Question 4.2. Is strong Axiom A equivalent to the fact that the product
with every o-closed forcing is <wi-proper?

Question 4.3. Does Theorem 1.4 hold for WCG,, in place of TWCG,?

Question 4.4. Is every Axziom A forcing embeddable into a finite iteration
of o-closed and ccc forcings?

Question 4.5. Does BFA (o-closed * ccc) imply 280 = Ry ?
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