A new computational method for locating the secondary bifurcation of a Rankine-Hugoniot curve

> Pablo Castañeda pablo.castaneda@itam.mx

Instituto Tecnológico Autónomo de México

IMPA :: Colóquio Brasileiro de Matemática 30/Julho/2015

Terse review of Riemann Problems The Rankine-Hugoniot locus

Consider a 2×2 conservation laws system

$$\frac{\partial u}{\partial t} + \frac{\partial f(u, v)}{\partial x} = 0,$$

$$\frac{\partial v}{\partial t} + \frac{\partial g(u, v)}{\partial x} = 0,$$

for $u, v : \mathbb{R} \times \mathbb{R}^+ \longrightarrow \mathbb{R}$. Let $U := (u, v)^{\mathrm{T}}$ and $F := (f, g)^{\mathrm{T}}$.

The mass balance for a shock with speed $\sigma = \sigma(U^o, U)$ is

$$\begin{aligned} f(U) - f(U^{\circ}) &= \sigma(u - u^{\circ}), \\ g(U) - g(U^{\circ}) &= \sigma(v - v^{\circ}), \end{aligned}$$

the Rankine-Hugoniot (RH) relation $[F] = \sigma[U]$.

For fixed U^{o} , U parametrizes the Hugoniot locus $\mathcal{H}(U)$.

The "Hugoniot" plot... ... the case of the first bifurcation case

Typically Hugoniot loci are not curves: self-intersection at U^o .

What happens in between?

The "Hugoniot" plot... ... the case of the first bifurcation case

Typically Hugoniot loci are not curves: self-intersection at U^o .

Another bifurcation!

Terse review of Riemann Problems The "Rankine-Hugoniot function"

Cancelling speed σ from RH relations $[F] = \sigma[U]$, leads to

$$[v - v^{o}][f(U) - f(U^{o})] - [u - u^{o}][g(U) - g(U^{o})] = 0,$$

the zero root of which is $\mathcal{H}(U^o)$.

We define the Rankine-Hugoniot function as

$$RH(U; U^{o}) := [v - v^{o}][f(U) - f^{o}] - [u - u^{o}][g(U) - g^{o}].$$

Terse review of Riemann Problems The Secondary Bifurcation manifold

New bifurcations rely on intrinsic relations...

The Jacobian matrix: $DF(U) := \frac{\partial F}{\partial U} = \frac{\partial (f,g)^{\mathrm{T}}}{\partial (u,v)^{\mathrm{T}}}$ Eigenvalue order by "family": $\lambda_1(U) \leq \lambda_2(U)$ Associated (rigth) eigenvectors: $r_1(U)$ Associated (left) eigenvectors: $\ell_1(U)$

Definition (Shearer and Schaeffer (1987))

A state U belongs to the **secondary bifurcation manifold** if there exists a state $U' \neq U$ such that

$$U' \in \mathcal{H}(U)$$
 with $\lambda_i(U') = \sigma(U, U')$ and $\ell_i(U')(U' - U) = 0$.

(The manifolds may be related to families.)

Terse review of Riemann Problems The Secondary Bifurcation manifold

We want all sates U with corresponding U'... a curve in \mathbb{R}^4 .

Numerical method may solve three relations.

Definition (Shearer and Schaeffer (1987))

A state U belongs to the **secondary bifurcation manifold** if there exists a state $U' \neq U$ such that

$$U' \in \mathcal{H}(U)$$
 with $\lambda_i(U') = \sigma(U, U')$ and $\ell_i(U')(U' - U) = 0$.

(The manifolds may be related to families.)

110

Terse review of Riemann Problems The Secondary Bifurcation manifold

We want all sates U with corresponding U'... a curve in \mathbb{R}^4 .

Numerical method may solve three relations.

Eigenvalues and eigenvectors are needed!

Definition (Shearer and Schaeffer (1987))

A state U belongs to the **secondary bifurcation manifold** if there exists a state $U' \neq U$ such that

$$U' \in \mathcal{H}(U)$$
 with $\lambda_i(U') = \sigma(U, U')$ and $\ell_i(U')(U' - U) = 0$.

(The manifolds may be related to families.)

Introduction to Algebraic Geometry Plane curves

The RH function is an affine plane curve; $RH \in k[\mathbb{R}, \mathbb{R}]$.

Definition (W. Fulton (1989))

The point U is called *simple* of RH if either derivative $RH_u(U) \neq 0$ or $RH_v(U) \neq 0$. A point that it is not simple is called *singular*.

Actually the "tangent line" to RH at U is $RH_u(U)(U-x) + RH_v(U)(v-y) = 0.$

Numerical method may solve three algebraic relations!

Introduction to Algebraic Geometry Locus by three little equations...

The numerical method looks for a zero root of algebraic equations:

RH function: $RH(U; U^{o}) = [v][f] - [u][g],$ $\partial RH/\partial u: RH_{u}(U; U^{o}) = [v]f_{u}(U) - [u]g_{u}(U) - [g],$ $\partial RH/\partial v: RH_{v}(U; U^{o}) = [v]f_{v}(U) - [u]g_{v}(U) + [f],$

where
$$[u] = u - u^{o}$$
, $[v] = v - v^{o}$, $[g] = g(U) - g^{o}$, $[f] = f(U) - f^{o}$.

Instead of difficult expressions:

 $\begin{array}{rcl} \mathsf{RH} \mbox{ function:} & [v][f] - [u][g] &= 0, \\ \mbox{speed matching:} & \lambda_i(U) - \sigma(U^o, U) &= 0, \\ \mbox{vector orthogonality:} & \ell_i(U)(U - U^o) &= 0. \end{array}$

However, we lost family association.

Piecewise linear approximation of the RH relation Contour 2D

Numerical grid splits the domain into cells; triangular configuration.

Piecewise linear approximation of the RH relation Contour 2D

Numerical grid splits the domain into cells; triangular configuration.

For elements in \mathbb{R}^4 we will use simplex.

$\underset{Contour \ 2\times 2}{\text{Simplex configuration}}$

Simplex configuration

Numerical results

The quadratic model Elliptic region presence

Numerical results

Corey quadratic model

${\mathcal T}$ hank you for your attention!