Un repaso rápido en Series de Fourier

La idea de estas notas es escribir lo básico sobre Series de Fourier, información más detallada puede ser encontrada en [Eva98, Sal08, Tol76].

1. Recuerda lo que es una función periódica de periodo T, nota que entonces:

$$\int_{a}^{a+T} f(x) dx = \text{Const.}, \quad \forall a \in \mathbb{R}.$$

2. Notación de *armónicos*, es por eso que en las Series de Fourier se usará la terminología **modos armónicos**:

$$y(x) := A \operatorname{sen}(\omega x + \varphi),$$

donde A es la amplitud del modo, ω la frecuencia (angular) y φ la fase inicial.

3. Los polinomios trigonométricos se definen similarmente a los clásicos. Tomando n como el grado y un perido T = 2l, tenemos

$$S_n(x) := A + \sum_{k=1}^n \left\{ a_k \cos \frac{\pi kx}{l} + b_k \sin \frac{\pi kx}{l} \right\}.$$

Un cambio de variables útil es $x = tl/\pi$, que nos convierte $S_n(x)$ en

$$\varphi(t) := A + \sum_{k=1}^{n} \{a_k \cos kt + b_k \sin kt\},\,$$

con modos armónicos de periodo 2π .

Ahora veremos propiedades del sistema básico de funciones trigonométricas:

$$\{1, \cos x, \sin x, \cdots, \cos kx, \sin kx, \cdots\}.$$

Primero, notemos que para $n \neq 0$,

$$\int_{-\pi}^{\pi} \cos nx \, dx = \int_{-\pi}^{\pi} \sin nx \, dx = 0,$$

y que dadas las identidades trigonométricas

$$\cos \alpha \cos \beta = \frac{1}{2} (\cos(\alpha + \beta) + \cos(\alpha - \beta)),$$

$$\sin \alpha \sin \beta = \frac{1}{2} (\cos(\alpha - \beta) - \cos(\alpha + \beta)),$$

$$\sin \alpha \cos \beta = \frac{1}{2} (\sin(\alpha + \beta) + \sin(\alpha - \beta)),$$

tenemos

$$\int_{-\pi}^{\pi} \cos nx \cos mx \, dx = \int_{-\pi}^{\pi} \cos((n+m)x) + \cos((n-m)x) \, dx = 0,$$

$$\int_{-\pi}^{\pi} \sin nx \sin mx \, dx = \int_{-\pi}^{\pi} \cos((n-m)x) - \cos((n+m)x) \, dx = 0,$$

$$\forall n, m \in \mathbb{N}, n \neq m,$$

así como

$$\int_{-\pi}^{\pi} \sin nx \, \cos mx \, dx \, = \, \int_{-\pi}^{\pi} \sin((n+m)x) + \sin((n-m)x) \, dx \, = \, 0, \quad \forall n, \, m \in \mathbb{N}.$$

De las primeras identidades tenemos que

$$\int_{-\pi}^{\pi} \cos^2 nx \, dx = \int_{-\pi}^{\pi} \sin^2 nx \, dx = \pi, \quad \forall n, m \in \mathbb{N}.$$

Con esto hemos mostrado la ortogonalidad de la base de funciones trigonométricas. Ahora, supongamos que tenemos una función f(x) de periodo 2π escrita de la forma:

$$f(x) = \frac{a_0}{2} + \sum_{k=1}^{\infty} \{ a_k \cos kx + b_k \sin kx \}.$$

Notamos que

$$\int_{-\pi}^{\pi} f(x) dx = \frac{a_0}{2} \int_{-\pi}^{\pi} dx + \sum_{k=1}^{\infty} \left\{ a_k \int_{-\pi}^{\pi} \cos kx \, dx + b_k \int_{-\pi}^{\pi} \sin kx \, dx \right\} = a_0 \pi,$$

o sea que f(x) es integrable. Veamos la integral de los productos con los elementos de la base:

$$\int_{-\pi}^{\pi} f(x) \cos nx \, dx = \frac{a_0}{2} \int_{-\pi}^{\pi} \cos nx \, dx$$

$$+ \sum_{k=1}^{\infty} \left\{ a_k \int_{-\pi}^{\pi} \cos kx \cos nx \, dx + b_k \int_{-\pi}^{\pi} \sin kx \cos nx \, dx \right\}$$

$$= a_n \pi,$$

$$\int_{-\pi}^{\pi} f(x) \sin nx \, dx = \frac{a_0}{2} \int_{-\pi}^{\pi} \sin nx \, dx$$

$$+ \sum_{k=1}^{\infty} \left\{ a_k \int_{-\pi}^{\pi} \cos kx \sin nx \, dx + b_k \int_{-\pi}^{\pi} \sin kx \sin nx \, dx \right\}$$

$$= b_n \pi.$$

Despejando, obtenemos la manera de calcular los coeficientes de Fourier:

$$a_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos nx \, dx, \qquad n = 0, 1, \dots$$

 $b_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin nx \, dx, \qquad n = 1, 2, \dots$

¿Qué le hemos pedido a f(x)? ¿Será suficiente?

Teorema 1. Si la función f(x) de periodo 2π se puede expandir en una serie trigonométrica que converge uniformemente en el eje real, entonces esta serie es la Serie de Fourier de f(x). (La que acabamos de construir.)

Teorema 2. Una función absolutamente integrable f(x) de periodo 2π puede expanderse en una serie trigonométrica que converge a f(x), excepto posiblemente a un conjunto finito de puntos (por periodo); ésta es la Serie de Fourier de f(x).

Observaciones imporantes sobre series de Fourier son muchas, tal vez las más importantes se relacionen a la paridad de las funciones: si el dominio se toma simétrico en torno del origen y la función a considerar es par, entonces todos los coeficientes b_n son nulos, si es

impar, entonces son los coeficientes a_n los nulos. Otro comentario importante es que la serie de Fourier aunque sea formada por funciones de clase $C^{\infty}(\mathbb{R})$, puede aproximar funciones discontinuas, siendo así en el límite discontinua. Lo curioso es que la discontinuidad es abierta en las dos partes contínuas y el valor en la discontinuidad es la media. Matemáticamente: digamos que f(x) es discontinua en x_o , es decir, $\lim_{x\to x_o+} f(x) \neq \lim_{x\to x_o-} f(x)$. Sea S[f](x) la serie de Fourier de f(x), entonces se satiface que:

$$S[f](x) = \frac{1}{2} \left(\lim_{\xi \to x+} f(\xi) + \lim_{\xi \to x-} f(\xi) \right),$$

en particular $S[f](x_o) = (\lim_{x \to x_o +} f(x) + \lim_{x \to x_o -} f(x))/2$, y si la función es continua, entonces $S[f](x) \equiv f(x)$ para toda x.

Algunos ejemplos

1.
$$x^{2} = \frac{\pi^{2}}{3} - 4\left(\cos x - \frac{\cos 2x}{2^{2}} + \frac{\cos 3x}{3^{2}} - \cdots\right), \cos x \in [-\pi, \pi].$$

$$x^{2} = \frac{4\pi^{2}}{3} + 4\sum_{n=1}^{\infty} \left(\frac{\cos nx}{n^{2}} - \frac{\pi \sin nx}{n}\right), \cos x \in [0, 2\pi].$$
2. $|x| = \frac{\pi}{2} - \frac{4}{\pi}\left(\cos x + \frac{\cos 3x}{3^{2}} + \frac{\cos 5x}{5^{2}} + \cdots\right), \cos x \in [-\pi, \pi].$
3. $|\sin x| = \frac{2}{\pi} - 4\left(\frac{\cos 2x}{3} + \frac{\cos 4x}{15} + \frac{\cos 6x}{35} + \cdots\right), \cos x \in [-\pi, \pi].$
4. $x = 2\left(\sin x - \frac{\sin 2x}{2} + \frac{\sin 3x}{3} - \cdots\right), \cos x \in [-\pi, \pi].$

$$x = \pi - 2\left(\sin x + \frac{\sin 2x}{2} + \frac{\sin 3x}{3} + \cdots\right), \cos x \in [0, 2\pi].$$
5. $\chi_{[0,\pi]}(x) = \frac{4}{\pi}\left(\sin x + \frac{\sin 3x}{3} + \frac{\sin 5x}{5} + \cdots\right), \cos x \in [-\pi, \pi].$

Referencias

[Eva98] L.C. Evans, *Partial Differential Equations*. AMS Graduate Studies in Mathematics, Providence, 1998

[Sal08] S. Salsa, Partial Differential Equations in Action. From Modelling to Theory. Springer Universitext, Milano, 2008.

[Tol76] G.P. Tolstov, Fourier Series. Dover, New York, 1976.