FINAL - FALL, 2014

ECO-13101 Economia Internacional I (International Trade Theory)

December 12, 2014

Instructions: Write your name and clave on the first page of your answer booklet/sheets and on the question booklet/sheets. Number all the sheets carefully, and staple them with the question sheets. You have 2 hours and 45 minutes to finish the exam. All questions have to be answered. All the best!

Question 1 (60 points)

Consider trade between $N(N \geq 2)$ countries. A representative consumer in country j maximizes

$$
U_{j}=\sum_{i=1}^{N} n_{i}\left(C_{i j}\right)^{\frac{\sigma-1}{\sigma}}, \sigma>1
$$

where $C_{i j}$ is the consumption of any product sent from country i to country j, and σ is the elasticity of substitution between products. Due to monopolistic competition each firm in each country produces a unique product which is sold domestically and is also exported. We are assuming that all products exported by country i sell for the same price $p_{i j}$ in country j. n_{i} is the number of products produced (and exported) by country i. Labor is the only factor of production. Endowment of labor in country j is \bar{L}_{j}, and wage is w_{j}.

1. (10 points) Setup and solve the the consumer's utility maximization exercise to show that

$$
C_{i j}=\frac{w_{j} \bar{L}_{j}}{P_{j}}\left(\frac{p_{i j}}{P_{j}}\right)^{-\sigma}
$$

where $P_{j}=\left(\sum_{i}^{N} n_{i}\left(p_{i j}\right)^{1-\sigma}\right)^{1 /(1-\sigma)}$ is price index of all products consumed in country j.
2. (15 points) Suppose, every product produced in country i requires $L_{i}=\alpha+\beta_{i} . X_{i}$ amount of labor to produce output $X_{i} . \alpha$ is fixed labor input (fixed cost), β_{i} is a constant marginal labor input. This implies that every product produced by country i is sold at the same price p_{i}. Setup and solve the firm's profit maximization problem to show that

$$
p_{i}=\frac{\sigma}{\sigma-1} \beta_{i} w_{i}
$$

Show that price is greater than marginal cost. What is the mark-up?
3. (10 points) Since firms are monopolistically competitive they earn zero profit. Use this to show that the number of products produced by country i is given by

$$
n_{i}=\frac{\bar{L}_{i}}{\sigma \alpha}
$$

4. (25 points) Suppose transporting any product from country i to country j incurs a per unit transportation cost of $\tau_{i j}$. Then the price of a product in country j, imported from country i, is $p_{i j}=\tau_{i j} p_{i}$, where p_{i} is the price charged by firms of country i (as derived in (2)).
(a) (10 points) Substitute this price of imported goods in the expression for $C_{i j}$ (derived in (1)) and show that the total expenditure by country j on goods imported from country i is given by

$$
T_{i j}=n_{i} Y_{j}\left(\frac{\tau_{i j} p_{i}}{P_{j}}\right)^{1-\sigma}
$$

where $Y_{j}=w_{j} \bar{L}_{j}$.
(b) (15 points) Use the expressions for n_{i} and p_{i} to derive the following gravity equation

$$
T_{i j}=\frac{\beta_{i}}{\alpha(\sigma-1)}\left(\frac{Y_{i} Y_{j}}{p_{i}^{\sigma}}\right)\left(\frac{\tau_{i j}}{P_{j}}\right)^{1-\sigma}
$$

where $Y_{i}=w_{i} \bar{L}_{i}$. Explain the effect of an increase in $\tau_{i j}$ on $T_{i j}$. How does this depend on the value of σ ? Give intuition for your explanation.

Question 2 (40 points)

Consider the Melitz model of trade with monopolistically competitive firms and two identical countries. Each firm produces a unique variety, which it can sell domestically as well as export it. The price (p), revenue (r), and profit (π) of a firm with labor productivity φ in the domestic (d) and export (x) market are given by

$$
\begin{gathered}
p(\varphi)= \begin{cases}p_{d}(\varphi)=\frac{\sigma}{\sigma-1} \cdot \frac{1}{\varphi}, & \text { domestic market } \\
p_{x}(\varphi)=\frac{\sigma}{\sigma-1} \cdot \frac{\tau}{\varphi}, & \text { export market }\end{cases} \\
r(\varphi)=\left\{\begin{aligned}
r_{d}(\varphi)=\left(\frac{\sigma}{\sigma-1} \cdot \varphi P\right)^{\sigma-1} R, & \text { domestic market } \\
r_{d}(\varphi)+r_{x}(\varphi), & \text { both markets }
\end{aligned}\right.
\end{gathered}
$$

where $r_{x}(\varphi)=\left(\frac{\sigma}{\sigma-1} \cdot \frac{\varphi}{\tau} P\right)^{\sigma-1} R$

$$
\Pi(\varphi)=\left\{\begin{aligned}
\Pi_{d}(\varphi), & \text { domestic market } \\
\Pi_{d}(\varphi)+\Pi_{x}(\varphi), & \text { both markets }
\end{aligned}\right.
$$

where $\Pi_{d}(\varphi)=\left(\frac{(\sigma-1)}{\sigma} \varphi P\right)^{\sigma-1} \frac{R}{\sigma}-f$ and $\Pi_{x}(\varphi)=\left(\frac{(\sigma-1)}{\sigma} \frac{\varphi}{\tau} P\right)^{\sigma-1} \frac{R}{\sigma}-f_{x} . P$ is the price index, R is the total expenidture on all varieities consumed, f and f_{x} are the fixed costs of production for domestic and export market, respectively, $\tau>1$ is the iceberg trade cost, and $\sigma>1$ is the elasticity of substitution. Let the endowment of labor be L. Let $\underline{\varphi}$ and $\underline{\varphi}_{x}$ denote the cut-off productivity to enter the domestic and the export market, respectively, and the average productivity of operating firms by $\tilde{\varphi}$. Wages are normalized to one, and we assuume that there is free antry and exit of firms. Let f_{e} denote the fixed cost of entering the industry, $G(\varphi)$ be the distribution from which φ is drawn, and let $g(\varphi)$ be the probability density function.

1. (20 points) Denote the equilibrium cut-off productivities by $\underline{\varphi}^{*}, \underline{\varphi}_{x}^{*}$, and the equilibrium average profit by $\Pi\left(\tilde{\varphi}^{*}\right)$. Show that the open economy equilibrium is the solution to the ZCP and FE conditions which are given by

$$
\begin{aligned}
(\mathrm{ZCP}) & \Pi(\tilde{\varphi}) & =\kappa\left(\underline{\varphi}^{*}\right) f+\operatorname{prob}_{x} \kappa\left(\underline{\varphi}_{x}^{*}\right) f_{x}, \\
(\mathrm{FE}) & \Pi(\tilde{\varphi}) & =\frac{f_{e}}{1-G\left(\underline{\varphi}^{*}\right)},
\end{aligned}
$$

where

$$
\begin{aligned}
\kappa\left(\underline{\varphi}^{*}\right) & =\left[\left(\frac{\tilde{\varphi}^{*}\left(\varphi^{*}\right)}{\underline{\varphi}^{*}}\right)^{\sigma-1}-1\right] \\
\kappa\left(\underline{\varphi}_{x}^{*}\right) & =\left[\left(\frac{\tilde{\varphi}_{x}^{*}\left(\underline{\varphi}_{x}^{*}\right)}{\underline{\varphi}_{x}^{*}}\right)^{\sigma-1}-1\right] \\
\underline{\varphi}_{x}^{*} & =\tau\left(\frac{f_{x}}{f}\right)^{1 /(\sigma-1)} \underline{\varphi}^{*} \\
\operatorname{prob}_{x} & =\frac{1-G\left(\underline{\varphi}_{x}^{*}\right)}{1-G\left(\underline{\varphi}^{*}\right)}
\end{aligned}
$$

Depict the equilibrium graphically.
2. (20 points) Show that $\partial \underline{\varphi}^{*} / \partial \tau<0$ and $\partial \underline{\varphi}_{x}^{*} / \partial \tau>0$. Interpret this result graphically, and explain the effect on selection of firms in the domestic and the export market. (Hints: (i) Combine the ZCP and FE conditions, (ii) differentiate w.r.t. τ, (iii) use the link between $\underline{\varphi}^{*}$ and $\underline{\varphi}_{x}^{*}$, and (iv) use the following result: $\left.\frac{\partial \kappa(\varphi)}{\partial \varphi}=\frac{\kappa(\varphi) g(\varphi)}{1-G(\varphi)}-\frac{(\sigma-1)[\kappa(\varphi)+1]}{\varphi} \forall \varphi\right)$

