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1
INTRODUCTION

Begins a chapter. Example: When the beloved cellist (Christopher Walken - outstanding)

of a world-renowned string quartet receives a life-changing diagnosis, the group’s future

suddenly hangs in the balance: suppressed emotions, competing egos and uncontrollable

passions threaten to derail years of friendship and collaboration. Featuring a brilliant ensemble

cast (including Philip Seymour Hoffman, Catherine Keener and Mark Ivanir as the three other

quartet members), it is a fascinating look into the world of working musicians, and an elegant

homage to chamber music and the cultural world of New York. The music, of course, is ravishing

(the score is the work of regular David Lynch collaborator Angelo Badalamenti): A Late Quartet

hits all the right notes.

1.1 Section

Begins a section.

1.1.1 Subsection

Begins a subsection.
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FIGURE 1.1. (a) A mutant RH cell. Asterisks show multiple sites of RH initiation in a

single root hair cell (indicated by the arrows). Figure reproduced from Rigas et al.

(2001). (b) Hair-forming cell with three RH initiation locations. The bar represents

50µm. Figure reproduced from Masucci and Schiefelbein (1994). (c) Large bump

in mutant rhd1. Figure reproduced from Grierson and Schiefelbein (2002). (d)

Mutant overexpressing gene ROP2; from right-hand to left-hand, numbers indicate

progressive snapshots at different times. RH initiation sites are indicated by the

arrows. The bar represents 75µm. Figure reproduced from Jones and Smirnoff

(2006). (e) Mutants affected by auxin. On the left-hand side, RH site is farther

away from the apical end (left arrow cap); on the right-hand side, multiple RH

locations (arrows). Figure reproduced from Payne and Grierson (2009).
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FIGURE 1.2. Developmental zones of an Arabidopsis root. Figure reproduced from

Grierson and Schiefelbein (2002).
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2
DATA

Here Cultivated who resolution connection motionless did occasional. Journey promise

if it colonel. Can all mirth abode nor hills added. Them men does for body pure. Far end

not horses remain sister. Mr parish is to he answer roused piqued afford sussex. It abode

words began enjoy years no do Ôªøno. Tried spoil as heart visit blush or. Boy possible blessing

sensible set but margaret interest. Off tears are day blind smile alone had.

Turned it up should no valley cousin he. Speaking numerous ask did horrible packages set.

Ashamed herself has distant can studied mrs. Led therefore its middleton perpetual fulfilled

provision frankness. Small he drawn after among every three no. All having but you edward

genius though remark one.

Respect forming clothes do in he. Course so piqued no an by appear. Themselves reasonable

pianoforte so motionless he as difficulty be. Abode way begin ham there power whole. Do unpleas-

ing indulgence impossible to conviction. Suppose neither evident welcome it at do civilly uncivil.

Sing tall much you get nor.

Two before narrow not relied how except moment myself. Dejection assurance mrs led

certainly. So gate at no only none open. Betrayed at properly it of graceful on. Dinner abroad am

depart ye turned hearts as me wished. Therefore allowance too perfectly gentleman supposing

man his now. Families goodness all eat out bed steepest servants. Explained the incommode sir

improving northward immediate eat. Man denoting received you sex possible you. Shew park

own loud son door less yet.

No depending be convinced in unfeeling he. Excellence she unaffected and too sentiments her.

Rooms he doors there ye aware in by shall. Education remainder in so cordially. His remainder

and own dejection daughters sportsmen. Is easy took he shed to kind.

Now led tedious shy lasting females off. Dashwood marianne in of entrance be on wondered
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CHAPTER 2. DATA

possible building. Wondered sociable he carriage in speedily margaret. Up devonshire of he

thoroughly insensible alteration. An mr settling occasion insisted distance ladyship so. Not

attention say frankness intention out dashwoods now curiosity. Stronger ecstatic as no judgment

daughter speedily thoughts. Worse downs nor might she court did nay forth these.

Ferrars all spirits his imagine effects amongst neither. It bachelor cheerful of mistaken. Tore

has sons put upon wife use bred seen. Its dissimilar invitation ten has discretion unreserved.

Had you him humoured jointure ask expenses learning. Blush on in jokes sense do do. Brother

hundred he assured reached on up no. On am nearer missed lovers. To it mother extent temper

figure better.

Lose john poor same it case do year we. Full how way even the sigh. Extremely nor furniture

fat questions now provision incommode preserved. Our side fail find like now. Discovered travel-

ling for insensible partiality unpleasing impossible she. Sudden up my excuse to suffer ladies

though or. Bachelor possible marianne directly confined relation as on he.

Placing assured be if removed it besides on. Far shed each high read are men over day. Afraid

we praise lively he suffer family estate is. Ample order up in of in ready. Timed blind had now

those ought set often which. Or snug dull he show more true wish. No at many deny away miss

evil. On in so indeed spirit an mother. Amounted old strictly but marianne admitted. People

former is remove remain as.

Sportsman delighted improving dashwoods gay instantly happiness six. Ham now amounted

absolute not mistaken way pleasant whatever. At an these still no dried folly stood thing. Rapid

it on hours hills it seven years. If polite he active county in spirit an. Mrs ham intention

promotion engrossed assurance defective. Confined so graceful building opinions whatever trifling

in. Insisted out differed ham man endeavor expenses. At on he total their he songs. Related

compact effects is on settled do.

2.1 Section

Cultivated who resolution connection motionless did occasional. Journey promise if it colonel.

Can all mirth abode nor hills added. Them men does for body pure. Far end not horses remain

sister. Mr parish is to he answer roused piqued afford sussex. It abode words began enjoy years

no do Ôªøno. Tried spoil as heart visit blush or. Boy possible blessing sensible set but margaret

interest. Off tears are day blind smile alone had.

Turned it up should no valley cousin he. Speaking numerous ask did horrible packages set.

Ashamed herself has distant can studied mrs. Led therefore its middleton perpetual fulfilled

provision frankness. Small he drawn after among every three no. All having but you edward

genius though remark one.

Respect forming clothes do in he. Course so piqued no an by appear. Themselves reasonable

pianoforte so motionless he as difficulty be. Abode way begin ham there power whole. Do unpleas-
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ing indulgence impossible to conviction. Suppose neither evident welcome it at do civilly uncivil.

Sing tall much you get nor.

Two before narrow not relied how except moment myself. Dejection assurance mrs led

certainly. So gate at no only none open. Betrayed at properly it of graceful on. Dinner abroad am

depart ye turned hearts as me wished. Therefore allowance too perfectly gentleman supposing

man his now. Families goodness all eat out bed steepest servants. Explained the incommode sir

improving northward immediate eat. Man denoting received you sex possible you. Shew park

own loud son door less yet.

No depending be convinced in unfeeling he. Excellence she unaffected and too sentiments her.

Rooms he doors there ye aware in by shall. Education remainder in so cordially. His remainder

and own dejection daughters sportsmen. Is easy took he shed to kind.

Now led tedious shy lasting females off. Dashwood marianne in of entrance be on wondered

possible building. Wondered sociable he carriage in speedily margaret. Up devonshire of he

thoroughly insensible alteration. An mr settling occasion insisted distance ladyship so. Not

attention say frankness intention out dashwoods now curiosity. Stronger ecstatic as no judgment

daughter speedily thoughts. Worse downs nor might she court did nay forth these.

Ferrars all spirits his imagine effects amongst neither. It bachelor cheerful of mistaken. Tore

has sons put upon wife use bred seen. Its dissimilar invitation ten has discretion unreserved.

Had you him humoured jointure ask expenses learning. Blush on in jokes sense do do. Brother

hundred he assured reached on up no. On am nearer missed lovers. To it mother extent temper

figure better.

Lose john poor same it case do year we. Full how way even the sigh. Extremely nor furniture

fat questions now provision incommode preserved. Our side fail find like now. Discovered travel-

ling for insensible partiality unpleasing impossible she. Sudden up my excuse to suffer ladies

though or. Bachelor possible marianne directly confined relation as on he.

Placing assured be if removed it besides on. Far shed each high read are men over day. Afraid

we praise lively he suffer family estate is. Ample order up in of in ready. Timed blind had now

those ought set often which. Or snug dull he show more true wish. No at many deny away miss

evil. On in so indeed spirit an mother. Amounted old strictly but marianne admitted. People

former is remove remain as.

Sportsman delighted improving dashwoods gay instantly happiness six. Ham now amounted

absolute not mistaken way pleasant whatever. At an these still no dried folly stood thing. Rapid

it on hours hills it seven years. If polite he active county in spirit an. Mrs ham intention

promotion engrossed assurance defective. Confined so graceful building opinions whatever trifling

in. Insisted out differed ham man endeavor expenses. At on he total their he songs. Related

compact effects is on settled do.
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2.1.1 Subsection

Begins a subsection.
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3
SEQUENCE ANALYSIS

Here be dragons but I will first talk about TILDA I will then talk about the particulars

of the data

3.1 Section

Begins a section.

3.1.1 Subsection

Begins a subsection.
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4
IMPUTATION

4.1 Introduction

4.1.1 Overview

In the previous chapter I adopted the design-based approach to unit nonresponse adjustment.

The focus was on modelling the response outcome R and consequently the role of the call

record data was to maximise the predictive power of the auxiliary information available

for this purpose. Inference was based on respondents only, with weights generated from the

nonresponse model applied to account for differential response.

The approach in this chapter is rather different. I consider the alternative mode of inference

described in the introduction, which is based on maximising the likelihood of the observed data.

Recall from Chapter 1 that the likelihood expresses the probability of the data values as a function

of the fixed data and (unknown) parameters. Here, the observed data include not only the survey

variables for respondents (Yobs), but also any auxiliary information Z, and the response indicator

for all sampled units R. Under this framework, the survey variables Y are modelled directly and

the potential role of the call record data naturally shifts to predicting unobserved values of Y

(Ymis), rather than the response indicator R.

The particular likelihood-based method I explore here is multiple imputation (?). Multiple

imputation (MI) is a statistically rigorous, and increasingly popular technique for dealing with

missing data (?). The essence of the method is to replace each unobserved value with multiple

plausible substitutes, generating several copies of the complete data. The estimate of interest is

calculated separately in each dataset and then averaged, resulting in an estimate which accounts

for the uncertainty of the missing values whilst making use of all the available data (?).

MI is predominantly used to address item-nonresponse and has received little attention as a

11



CHAPTER 4. IMPUTATION

method to adjust for unit nonresponse in household surveys. ? were the first to explicitly apply

MI in this context. ? went further by suggesting that MI could be used to jointly correct for bias

due to nonresponse and bias due to measurement error. ? has applied MI as a means to monitor

survey quality.

I investigate MI as a potential method to include call record data, and other auxiliary

variables, when making inference from the TILDA dataset. I focus on two practical matters of

implementation which arise in TILDA and other household surveys. First I explore the approach

to building imputation models, which relate the incomplete data to observed variables. Second I

explore the effect of different choices for the number of imputations. As a matter of course, this

analysis emphasises the potential role of call record data, although the lessons learned are also

relevant to other types of auxiliary data. These issues have been previously discussed in more

general settings, but not in the context of unit nonresponse. For example ? and ? offer suggestions

on model specification, while ?, ? and ? are examples of recent discussions on the choice of

number of imputations. However, these studies draw on simulated data or applications to item-

missing data. Unit nonresponse in cross-sectional household surveys results in a very particular

missing-data problem, characterised by high proportions of missing data and often a limited

amount of auxiliary information. The missing data pattern is close to monotone, the foremost

cause of missingness being unit nonresponse, but item nonresponse inevitably present. For these

reasons it is necessary to assess the practical questions surrounding multiple imputation in this

particular context.

Using any form of imputation to adjust for unit nonresponse in household surveys raises

issues about the level of analysis. The question is whether imputations should be made for missing

individuals or missing households. This is uncomplicated if the sampling scheme only requires

one respondent per household, but if multiple occupants are eligible it becomes problematic.

When a household is never contacted, or refuses to participate, it is generally unknown how many

individuals would have been eligible if the household did take part. As a result, imputation at

the individual level cannot proceed because it is never clear how many individuals are actually

missing.

In this chapter, the first set of analyses are performed at the household level. To achieve this,

the dataset is reduced to one person per household amongst respondents and one row of data is

imputed (multiple times) for each nonresponding household. This is equivalent to assuming that

only one person was sampled within each household. This is not ideal, because some information

is wasted. The issue of imputation when the number of missing individuals is unknown has

not been previously explored in the literature;I begin to address it here. I propose a chained-

imputation approach which derives estimates from individual-level data by first imputing the

number of eligible respondents and then imputing survey values for each imputed individual.

Using a simple simulation I will show that this approach produces valid estimates when the

nonrespondents are missing at random (MAR) and the imputation model is correct.

12



4.1. INTRODUCTION

4.1.2 Background

Under the likelihood approach to estimation it is necessary to specify a joint model for the

super-population model that generates the data and the response mechanism that determines

whether or not a sampled unit participates. The population parameters of interest are estimated

by maximising the corresponding joint likelihood. ? show that, under certain conditions, the

mechanism leading to response can be ignored and parameter estimates can be based solely on

the likelihood for the survey data and the auxiliary variables. Focusing on the observed-data

likelihood, rather than the joint likelihood for the data and the response mechanism, greatly

simplifies the estimation task. Several principled methods for estimation given the observed data

are available. These include procedures based on maximum likelihood (ML) such as expectation-

maximisation (EM) algorithm (?) and full information maximum likelihood (?). With the increase

in computing power since the 1980s Markov Chain Monte Carlo (MCMC) methods such as

Gibbs sampling (?) and data augmentation (?) have become increasingly popular and practical.

These algorithms operate on the shared principle of estimating an incomplete data problem by

repeatedly estimating a complete-data analogue, and will be discussed in detail in Section 4.2.

Several considerations lead to the choice of MI over other potential maximum likelihood

techniques. MI is both flexible and practical. Any usual complete data analysis can be applied,

and a single multiply-imputed dataset can be used to tackle many incomplete data problems (?).

Another major advantage is the calculation of standard errors. These are arrived at immediately

through MI, but require additional analysis such as boot-strapping under the EM-algorithm. MI

also has the very useful property of simultaneously addressing item missing and unit missing

data (?). On a practical level, the widespread development of multiple imputation procedures

means that analysis can be performed in most standard statistical packages. Finally, imputation

is convenient in a survey setting, where typically the survey organisation has access to more

information about the sample than is available to the public. Because the imputation process

happens separately to the analysis, the survey organisation can use this information to impute,

without having to release this (potentially sensitive) data to the end-users.

The practice of filling in missing observations with some plausible substitute is a common

approach in missing data problems. Long-standing, albeit dubious, methods include: mean

imputation, where missing values are simply replaced with the average of the observed values;

and regression imputation, where the predicted value from a regression of the observed data

on some auxiliary information is imputed. While satisfying the immediate goal of delivering a

complete dataset, and simultaneously preserving the mean of the observed values amongst the

imputed values, such naïve approaches to imputation can do more harm than good (?). Except in

cases where there are very few missing data values, mean or regression imputation results in

under-estimated standard errors, with falsely inflated test statistics. This is a consequence of

the fact that the imputed values are uncertain, and this uncertainty is ignored when imputed

data are treated as if they were actually observed. Imputing several possible values for each

13



CHAPTER 4. IMPUTATION

missing datum overcomes this problem, and allows a proper estimate of the uncertainty due to

the missing data. This technique is referred to as multiple imputation (MI), and was originally

developed by Rubin in the 1970s (Rubin 1977a, 1977b).

4.1.3 Previous Research Using MI for Nonresponse

While largely used as a tool for dealing with item nonresponse, there are some examples of

multiple imputation being applied to unit missing data, as I propose here. ? compare the perfor-

mance of MI to more traditional techniques: complete-case analysis; design-based weighting; and

estimates from a nonresponse follow up. The analysis is based on two national surveys carried out

in Germany on the topic of fear of crime. Cell weights are generated from auxiliary information

available from two sources: a micro census (distributions of age, sex, labour force status and

state); and a commercial survey (occupational status and community size). The nonresponse

follow-up study successfully recruited approximately one quarter of initial nonrespondents from

both surveys. In the substantive model the dependent variable is fear of crime, modelled as a

function of individual level demographics and area-level characteristics listed above. Of particular

interest are the t-statistics (or p-values) associated with the model coefficients. Results based

on complete-cases only are similar to those from the weighted models, both with and without

the nonresponse follow-up sample. MI estimates based on five fully-imputed datasets show some

differences, including the emergence of a new significant predictor, crime rate. Based on the

intuitive appeal of this result, the authors prefer the imputation approach.

? explores the potential for MI to identify common correlates of unit nonresponse and mea-

surement error. Multiple imputation is used to fill-in the unobserved data caused by unit and

item nonresponse in the National Survey for Family Growth (NSFG). Models for nonresponse

and measurement error are then fitted to the imputed data. The main survey outcome of interest

is the proportion of women reporting a previous abortion experience, a key measure for the NSFG.

The question on abortion experiences is asked in two modes, face-face and self-administered,

which allows measurement error to be assessed. As the latter mode is considered more appro-

priate for such a sensitive topic, measurement error on this variable is defined as a report of

an abortion experience in self-administered mode but no experience reported in face-to-face

mode. No variables are predictive of both nonresponse and measurement error, suggesting that

these two error sources do not have common causes. The estimated proportion of women having

experienced an abortion based on multiple imputation is compared to the same estimate based on

more traditional inverse probability weights. While the point estimates are similar, the standard

errors are considerably smaller when MI is used, leading to a large reduction in mean square

error. Peytchev ascribes the improvements in precision to more judicious use of the auxiliary

information when using MI compared to inverse probability weighting.

These applications illustrate that there is some potential for MI to be useful in realistically

complex survey settings. The limited evidence suggests that the main advantages are an increase

14



4.1. INTRODUCTION

in precision of point estimates, and the ability to jointly address item nonresponse and unit

nonresponse. While ? and ? successfully applied MI to account for unit nonresponse they did not

discuss practical matters of implementation. For example, the method used to generate imputed

values, the selection of imputation models, and the choice of the number of imputed datasets did

not receive much attention. These topics have been discussed more generally: ? compare different

approaches to generating imputations; ?, ? and ? explore the number of imputed datasets; ?
analyse the effect of varying the auxiliary variables in the imputation model. However the above

studies rely on small datasets or simulated data, and these issues are particularly important in

the specific context of household survey nonresponse. Unit-missing survey data have different

properties to other mechanisms leading to unobserved data, such as item nonresponse and

drop-out in clinical studies. With unit nonresponse one typically encounters a high proportion

of missing values, with a close to monotone missing data pattern. Further, in many household

surveys, rich auxiliary information is generally lacking. While ? had access to pre-existing data

on all sample individuals, the combination of aggregated area-level statistics and household

observations available to ? is more typical.

The analysis presented here explores these questions using TILDA as a case study. In

particular, I discuss the potential approaches to drawing imputations, and motivate the selected

approach. I investigate two possible methods to specify the imputation models and compare

results with several choices for the number of imputed datasets. These analyses shed light on

some of the questions which face practitioners seeking to impute for unit missing data.

4.1.4 Outline for the remainder of Chapter 4

Section 4.2 provides some necessary theoretical background. To start, I review the principles

of likelihood-inference and outline the conditions under which it is permissible to ignore the

missing-data mechanism when making inferences to the population. I then go on to describe three

important and related algorithms for basing inference on the observed-data likelihood, namely

multiple imputation, data augmentation and fully conditional specification. All three algorithms

are illustrated with simple examples in Section 4.3. Section 4.4 addresses the practical questions

discussed above by applying multiple imputation to the TILDA dataset at the household level.

I compare two approaches to specifying imputation models: an inclusive approach which uses

all available predictors; and an exclusive approach which specifies a separate imputation model

for each variable with missing data. I also compare estimates under different values of m, the

number of imputed datasets. Finally for Section 4.4, estimates based on multiple imputation

are compared to those derived through inverse probability weighting. Section 4.5 addresses the

question of how to generate estimates based on individual data when the number of missing

individuals is unknown. I propose a multistage imputation approach which first imputes the

unknown number of occupants at unresponsive households, and then fills in missing survey

values for known and imputed individuals. The suitability of this method under certain conditions

15



CHAPTER 4. IMPUTATION

is confirmed using a simulation study. The results are reviewed and discussed in Section 4.6.

4.2 Likelihood Inference With Missing Data

The purpose of this section is to outline the theory underlying likelihood estimation and multiple

imputation. To begin I review the principles of likelihood inference with complete data. I then

outline the extensions to the more typical scenario where some variables are incomplete, and

define the conditions under which it is possible to ignore the response mechanism when making

inferences about the parameters of interest. Following this, the principles underlying multiple

imputation are discussed. I outline three approaches to drawing values to be imputed: through

an explicit regression model; through an MCMC approach, data augmentation; and through fully

conditional specification, which is a technique used to generate imputations when values are

missing for a variety of variables with different distributions.

4.2.1 Overview of likelihood inference

To begin I review the notation introduced in Chapter 1, which follows from ? and ?. Let Y denote

the complete target data, which includes observations on p variables for i = 1. . .n sampled units.

Y =
y11 . . . y1p
...

. . .
...

yn1 . . . ynp

Each row of Y comprises observations for one sampled unit, and we write these as yi. We assume

the values of yi are independently and identically distributed (i.i.d.) according to a model f (yi|θ),

where θ is a vector of parameters. Without loss of generality, Y could also include auxiliary

variables Z which are available for all sampled units, either prior to data collection, or observed

during data collection.

16



4.2. LIKELIHOOD INFERENCE WITH MISSING DATA

The probability density of the complete data Y is

P(Y |θ)=
n∏

i=1
(yi|θ)

We are interested in making inferences about the unknown parameter θ, or more generally

functions of this parameter s(θ). Under the likelihood framework, inference is based on the

likelihood function, which expresses the probability of the observed values of Y as a function of θ.

The likelihood is any function of θ ∈ω proportional to P(Y |θ), and is written L(θ|Y ). As ?, p98

point out, there is not one single likelihood function but rather a set of proportional functions. In

fact, the natural logarithm of the likelihood, or the loglikelihood, written l(θ|Y )= ln(L(θ|Y )), is

one such proportional function frequently used in practice to simplify calculations. Inferences

about θ are made by maximising the likelihood (or loglikelihood), and even with complete data

this is a wide-ranging topic. See ? for a comprehensive review of likelihood-based analyses.

In household surveys, the complete data Y are never fully observed for the whole sample,

predominantly due to unit nonresponse. The data Y can be expressed as Y = (Yobs,Ymis), where

Yobs denote the observed values of Y and Ymis denote the missing values. Again, without loss

of generality Yobs could also include auxiliary variables available for all respondents. As in in

Chapter 1, the mechanism leading to response R is defined as a binary indicator, with Ri = 1 if

unit i furnishes a complete response for yi. We assume that response is a stochastic mechanism

defined by P(R|φ), with φ referred to as the response mechanism parameter. Note that this

setup implicitly assumes that response is at the unit-level and that item nonresponse does not

occur. More generally R could be defined as a matrix with elements r ip indicating observed and

unobserved values of yip, but the current definition is sufficient to outline the theory.

When Y is incomplete, it is necessary to consider the mechanism leading to response when

performing a likelihood analysis (?). In particular, it is necessary to consider the joint density

P(Y ,R|θ,φ). In the presence of nonresponse the observed data comprise the values of R, which

indicate whether or not a sampled unit has participated, and Yobs, which are the survey variables

for those who do respond. Assuming discrete values of Y , the marginal distribution of the observed

data is defined by summing over the missing values of Y

P(Yobs,R|θ,φ)= ∑
Ymis

P(Y ,R|θ,φ)

Note that if Y was continuous the summation would be replace by an integration with respect to

Ymis. The correct likelihood for inference with missing data is L(θ,φ|Yobs,R), the set of functions

of θ and φ proportional to P(Y ,R|θ,φ). ?, p119 refer to this as the full likelihood. Alternate

factorisations of P(Y ,R|θ,φ) lead to two common approaches for analysing incomplete data,

selection models and pattern mixture models.

4.2.2 When can the response mechanism be ignored?

? outline the conditions under which the response mechanism can be ignored in a likelihood
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analysis. It is desirable to avoid the model for response as the resulting estimation is greatly

simplified. For now, consider the factorisation of P(Yobs,R|θ,φ) which motivates the selection

model:

P(Yobs,R|θ,φ)= ∑
Ymis

P(R|Y ,φ)P(Y |θ)

= ∑
Ymis

P(R|Yobs,Ymis,φ)P(Yobs,Ymis|θ)

At this point, recall that Rubin’s (1976) definition of MAR states that the distribution of the

response mechanism should only relate to observed quantities, or

P(R|Yobs,Ymis,φ)= P(R|Yobs,φ)

Therefore, if we assume a MAR response mechanism, the above factorisation becomes

P(Yobs,R|θ,φ)= ∑
Ymis

P(R|Yobs,Ymis,φ)P(Yobs,Ymis|θ)

= P(R|Yobs,φ)
∑

Ymis

P(Yobs,Ymis|θ)

= P(R|YobsP(Yobs|θ)

Finally, we note that in the above expression the parameter of interest (θ) is isolated from the

parameter for the response mechanism (φ). If we can assume that these parameters are indepen-

dent, then any function of θ proportional to P(Yobs|θ) will also be proportional to P(Yobs,R|θ,φ).

In other words the value of θ which maximises the likelihood L(θ|Yobs) will also maximise

P(θ,φ|Yobs,R), so P(R|Yobs,φ) can be ignored when making inferences about θ.

? refers to this final assumption as distinctness of parameters, and formally states that two

parameters are distinct if their joint parameter-space is equal to the product of the parameter

space of the first and the parameter space of the second. If the missing values are MAR and

the parameters are distinct, the response mechanism can be ignored. ? refer to L(θ|Yobs) as the

ignorable likelihood.

To review, the response mechanism is ignorable in a likelihood analysis if the two assumptions

made in this exposition are satisfied:

i The missing observations should be MAR with respect to the observed variables.

ii The parameters of the response mechanism should be distinct from the parameters of the

data model.

The first assumption is generally considered as key here; ignoring the missing data mechanism

when the data are MAR but the parameters are not distinct still produces valid inferences, albeit
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not fully efficient ?. Assuming distinctness of parameters is generally considered trivial in the

context of unit nonresponse. The processes generating Y and R both occur naturally and there is

no reason to believe that the parameters would be dependent. This may not be the case in other

situations leading to incomplete data, for example missingness by design. The remainder of this

section will describe some practical techniques for analysing incomplete data under the ignorable

assumption.

4.2.3 Multiple Imputation

As mentioned in the introduction to this chapter, single imputation involves filling in missing

values to generate a complete or rectangular dataset. Multiple imputation extends this idea by

generating several complete datasets using different values of the imputed data. Estimates are

then derived by calculating the quantity of interest separately in each dataset and averaging the

resulting values. MI can be broken down in to three distinct phases:

i Imputation. Missing values are repeatedly filled-in to generate m copies of the completed

dataset

ii Analysis. The analysis of interest is repeated separately on each imputed dataset

iii Pooling. The estimates from each distinct analysis are combined to provide point estimates

and standard errors which incorporate the uncertainty of the imputed values.

The analysis and pooling steps are relatively straightforward. In step two, any usual analysis

such as mean estimation, regression or survival analysis, can be performed. The computational

cost of performing such analyses multiple times is usually minor. The process of pooling estimates

in step three follows well-established procedures, often referred to as Rubin’s Rules, which will

be discussed in detail presently. The most difficult part of the MI technique is the actual method

used to generate imputations in step one. ? motivates MI from a Bayesian perspective, focussing

on the posterior distribution of the parameter given the observed data, that is P(θ|Yobs). Under

this framework, values imputed values for Ymis should be drawn from the predictive distribution

of the missing data given the observed data, which is written as P(Ymis|Yobs). Approaches to

drawing from this distribution are discussed in Section 4.2.4.
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Pooling complete-data estimates

In the second stage of multiple imputation, the analysis of interest is repeated on each distinct

dataset. This produces m estimates of the parameter of interest, which could be a mean or

regression parameter for example. We denote this parameter Q, and its associated variance error

U. Combining information from multiply imputed datasets is straightforward using Rubin’s

Rules ?. The point estimate for a parameter is simply the average parameter estimate from the

m imputed datasets.

Q̂ = m−1
m∑

k=1
Q̂k

The associated squared standard error combines two sources of variance: the within-imputation

variance Ū which reflects the sampling variation; and the between-imputation variance B, which

reflects variability due to the fact that not all data are observed. Ū is defined as the average

variance across the m imputed datasets, that is

Ū = m−1
m∑

k=1
Ûk

B is calculated as

(m−1)−1
m∑

k=1
(Q̂k − Q̄)2

Finally, the total variance T associated with Q is given by

T = (1+m−1)B+Ū

When the number of imputed data sets is large, the fraction of missing information (FMI) is

estimated as

λ≈ B
Ū +B

where Ū and B denote the within and between variation. If the auxiliary variables are poor

predictors of the missing variables then the FMI will equate to the proportion of missing data,

which in the unit nonresponse situation is simply the nonresponse rate. When good auxiliaries

are available the FMI reduces below this proportion (?).

4.2.4 Generating Valid Imputations from the Posterior Predictive
Distribution

Under Rubin’s Bayesian motivation for MI the focus of estimation is the observed data posterior

of the parameter of interest, P(θ|Yobs). Values to be imputed for Ymis should be drawn from the

posterior predictive distribution of the missing data, P(Ymis|Yobs) (?). This statement can be

explained by noting that the observed-data posterior of θ is equal to its complete-data distribution

20



4.2. LIKELIHOOD INFERENCE WITH MISSING DATA

averaged over the posterior predictive distribution of the missing data (?, p82). This is described

mathematically as

P(θ|Yobs)=
∑

Ymis

P(θ|Yobs,Ymis)P(Ymis|Yobs)

As before, the use of summation here assumes a discrete probability mass function for Y . Multiple

imputation approximates this using a small number of copies of Ymis: Y (1)
mis,Y

(2)
mis . . .Y (m)

mis, as below

(?, p210)

P(θ|Yobs)≈
1
m

m∑
i=1

P(θ|Yobs,Y (m)
mis)

The value of m is typically small, in the range of 5 to 10, although in some situations a higher

number will be necessary. This will be discussed in detail in Section 4.4.

In this section I will describe three approaches to drawing from the posterior predictive

distribution of the missing data, P(Ymis|Yobs). The first is regression imputation, which is a

straightforward approach when there is one incomplete variable (?). This approach, or related

univariate techniques, can easily be extended to deal with monotone missing data (?). The second

approach is data augmentation, which is an MCMC technique used to generate draws from

P(Ymis|Yobs) when there are multiple incomplete variables with a nonmonotone missing data

pattern (?). The third approach is fully conditional specification (FCS), which is particularly

useful when the incomplete variables follow a variety of different distributions (??).

Regression imputation for univariate or monotone missing data

To begin, assume that there is only one incomplete variable, so that the observed data Yobs consist

of p−1 complete variables and one partially complete variable. In the regression approach the

observed values of the incomplete variable are regressed on the fully observed valuables. The

fitted model is used as a basis to predict missing values of the observed variable, although there

is an interim step to account for the fact that the model is fitted with uncertainty.

To see how draws from P(Ymis|Yobs) are obtained consider the following identity

P(Ymis|Yobs)=
∫
Θ

P(Ymis|Yobs,θ)P(θ|Yobs)dθ

where Θ denotes the parameter space for θ. In the first factor on the right-hand side, the missing

data are conditional on the observed data and the value of the parameter θ. In the second factor,

θ is conditional only on observed values. This suggests the following approach to generate a draw

from P(Ymis|Yobs). First, a value for θ is drawn from its posterior distribution given the observed

data

θ∗ ∼ P(θ|Yobs)

This value is in turn used to draw imputations from the conditional predictive distribution

Y ∗
mis ∼ P(Ymis|Yobs,θ∗)
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This second step constitutes a draw from the appropriate distribution, namely the posterior

predictive distribution of the missing data given the observed data (???)

The regression of the incomplete variable on the fully observed ones is necessary to generate a

value of θ∗. This is known as the imputation model. The form of the model and choice of predictive

variables are under the control of the analyst and require careful consideration to ensure valid

imputations. ? provide explicit algorithms for drawing values of θ∗ and Y ∗
mis when the data Y

are normal, binary or categorical.

The regression approach is simple to extend to monotone missing data (?). Suppose that of

the p columns of the data matrix Y there are k complete variables and p−k incomplete variables.

Given a monotone missing data pattern, the incomplete variables can be arranged such that

whenever Yi( j) is unobserved, Yi( j+1) is also unobserved, i.e.

Yi( j) ⊆Yi( j+1) ⊆ . . .⊆Yi(p−1) ⊆Yi(p)

Attrition in a longitudinal study, with no item nonresponse, is an example of a mechanism leading

to such a pattern.

In this scenario, a complete dataset can be achieved using p−k univariate imputations, one

for each incomplete variable. Each variable is imputed in turn, beginning with the one with

the most observations Yi( j+1). For each imputation model, the regression conditions on the fully

observed variables and the previously imputed incomplete variables (?, Ch.5).

Data Augmentation

When there are multiple incomplete variables with a nonmonotone missing data pattern it

is often not possible to directly draw values of θ∗ from the correct joint distribution. MCMC

algorithms which converge to the appropriate distribution have been implemented to overcome

this. One such algorithm is data augmentation (??). First described by ?, the data augmentation

(DA) algorithm iterates between filling in unobserved data based on a current value for the data

model parameter and re-estimating the parameter based on the combined observed and filled-in

data. The latter estimation is based on complete data and is therefore relatively simple.

The motivation behind DA can be seen from the pair of equations

P(θ|Yobs)=
∑

Ymis

P(θ|Yobs,Ymis)(P(Ymis|Yobs)

P(Ymis|Yobs)=
∫
Θ

P(Ymis|Yobs,θ)P(θ|Yobs)dθ

Note that two distributions arise in both equations: the observed-data posterior (θ|Yobs) and

the predictive distribution of the missing values P(Ymis|Yobs). DA exploits this interdependency.

Given an initial estimate of θ, the second equation can be calculated. Substituting that result

into the first equation gives an updated estimate of θ. In more detail, the DA-algorithm iterates

between the following two steps ?, p72:
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1. Imputation (I) Step

Given a current value of the parameter θt, values for the missing data are drawn from the

conditional predictive distribution

Y (t)
mis ∼ P(Ymis|Yobs,θ(t))

2. Posterior (P) Step

An each step t an updated parameter value θ(t+1) is drawn from the complete-data posterior

θ(t+1) ∼ P(θ|Yobs,Y (t)
mis)

Repeating these steps generates two stochastic chains,
{
θ(t) : t = 1,2, . . .

}
and

{
Y (t)

mis : t = 1,2, . . .
}
.

With sufficient iterations, and allowing for a burn-in period to negate the effect of the starting

choice for the parameter, these chains converge, with P(θ|Yobs) and P(Ymis|Yobs) as their respec-

tive stationary distributions. Thus, for large values of t, Y (t)
mis will be a draw from P(Ymis|Yobs), i.e.

a draw of the unobserved data from the correct distribution. Multiple independent copies of Ymis

can be generated by running m parallel versions of the DA algorithm of length t and taking the

last draw Y (t)
mis in each case. Otherwise, a single chain of length m× t can be generated and the m

copies Y (t)
mis,Y

(2t)
mis, . . . ,Y (mt)

mis can be stored. Usually a combination of techniques are combined to

assess whether or not the chain has converged. This includes visual inspection and comparing

chains which have diffuse starting points (?). The issue of chain convergence will be discussed in

more detail in Section 4.5.

The data augmentation algorithm also gives rise to an alternative means of drawing inferences

about the parameter θ. For large values of t, the chain
{
θ(t) : t = 1,2, . . .

}
converges to the stationary

distribution P(θ|Yobs), the posterior distribution of θ. This distribution can be summarised

through the mean, median or other quantiles to give direct inferences for θ. ? refers to this

approach as parameter simulation.

Note that the stochastic draws at each iteration of the DA algorithm are generally not

independent. This has implications for both multiple imputation and parameter simulation. If

multiple copies of Ymis are drawn from a single chain, the value of t should be sufficiently large

so that Y (t)
mis and Y (2t)

mis are independent. When summarising the posterior distribution directly,

the dependency between successive draws of θ(t) effectively reduces the number of independent

observations. There are two possibilities in this case. First, the chain can be thinned. Thinning

involves storing only every kth element of the chain so that the observations k,2k,3k . . . are

independent. Alternatively the length of the chain can simply be extended so that the effective

number of draws is larger (?).

The choice of whether to employ multiple imputation or parameter simulation depends on

the analyst’s goals. Multiple imputation replaces the missing data with actual values and these

imputed data can be used to perform numerous different analyses. This would be more appropriate

at the exploratory data analysis stage, or if there are various users with different inferential aims.
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Parameter simulation, on the other hand, provides inference on a single parameter or parameter

vector. This is more appropriate when the parameter of interest is established in advance (?).
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Here be dragons but I will first talk about TILDA I will then talk about the particulars

of the data

5.1 Section

Begins a section.

5.1.1 Subsection

Begins a subsection.
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