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Abstract This paper deals with the spatio-temporal dynamics of a pollinator–plant–
herbivore mathematical model. The full model consists of three nonlinear reaction–
diffusion–advection equations defined on a rectangular region. In view of analyz-
ing the full model, we firstly consider the temporal dynamics of three homogeneous
cases. The first one is a model for a mutualistic interaction (pollinator–plant), later on
a sort of predator–prey (plant–herbivore) interaction model is studied. In both cases,
the interaction term is described by a Holling response of type II. Finally, by con-
sidering that the plant population is the unique feeding source for the herbivores, a
mathematical model for the three interacting populations is considered. By incorpo-
rating a constant diffusion term into the equations for the pollinators and herbivores,
we numerically study the spatiotemporal dynamics of the first two mentioned mod-
els. For the full model, a constant diffusion and advection terms are included in the
equation for the pollinators. For the resulting model, we sketch the proof of the ex-
istence, positiveness, and boundedness of solution for an initial and boundary values
problem. In order to see the separated effect of the diffusion and advection terms
on the final population distributions, a set of numerical simulations are included. We
used homogeneous Dirichlet and Neumann boundary conditions.
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1 Introduction

The heterogeneity is one of the most obvious features of the environment. In fact,
humidity, temperature, light, food and water distribution, vegetation, local weather,
etc., are different from one location to another. The drastic changes in the weather
during the year, originates migratory movements of biological populations, like the
monarch butterfly from Canada and the US to the central west parts of Mexico during
the winter. The population migratory movements are not at random, in fact, depend
upon specific individuals; they form swarms, herds, flocks, or schools, for instance.

On the other hand, the gregarious or social behavior of some species is on the basis
of the grouping of populations. That is, they defend themselves from other species,
overcome hostile environmental conditions, mate, etc. The grouping of microscopical
individuals also has been observed: the amoeba Dictyostelium discoideum exhibits
spiral aggregative patterns toward those places of the medium where the emission of
a chemoattractant (cAMP) takes place. The colonies of the bacteria Bacillus subtilis
adopt different morphologies—included the branched patterns of fractal-like type—
depending on the agar and nutrient concentrations in the Petri dish. Nevertheless, the
underlying interplay in these processes is between the individual and the collective
movement; in fact, the grouping processes involves different space and time scales.
Consequently, questions such as how do the individuals interact with each other in
order to produce such a collective ordered spatial distributions are crucial.

The formation of different aggregation and aggregation-like patterns in popula-
tions is the result of a complex nonlinear cooperative individual behavior—which
includes short distances signaling, sounds, movements, among others. In Couzin and
Krause (2003), the authors present a study for the formation of different types of self-
organization processes in vertebrates. Additionally, the basis for the development of
some mathematical models by describing different types of ecological populations
aggregation is presented in Okubo (1986).

Depending upon the way how the spatial variables are incorporated into the mod-
els, these can be classified in two main families: discrete and continuous. The spatial
discrete models include:

1. Patches. Here, the space is divided in regions or patches which, according to cer-
tain biological and/or physical features, can be seen as a whole. For each patch, the
population interactions can be described by a system of ordinary differential equa-
tions (ODE) and the patches are coupled by diffusion which is characterized by the
population flow between two adjacent patches. Moreover, for the simplest case, the
magnitude is proportional to the corresponding population density difference per each
patch. For instance, denoting by uk

i (t) the population density of the population i at
the patch k at time t , the ODE system

u̇k
1(t) = f

(
uk

1, u
k
2

) + D1
(
uk+1

1 − uk
1

)
,

u̇k
2(t) = g

(
uk

1, u
k
2

) + D2
(
uk+1

2 − uk
2

)
,

with i = 1,2 and k = 1,2,3 describes two interacting populations in a habitat with
three patches. Here, the density dependent functions f and g denote the rate of
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change of each population and Di are positive constants. This idea can be gener-
alized in order to consider the dynamics of more interacting populations in a patchy
environment. In May and Southwood (1990), the reader will find a general view on
this topic.

2. Cellular automata. The habitat is divided in discrete units called cells and the
individuals movement appears in an indirect way: just by saying that the cell is oc-
cupied or unoccupied. The simplest cellular automaton consists of a: (i) finite one-
dimensional discrete row, (ii) small universe of eligible states at which the cells can
be, (iii) rule of evolution which tells us the criteria for updating the state of the j th
cell at the generation (discrete) t , depending upon the neighboring cells state at the
t − 1 generation. The neighboring cells could be just the very closest ones (the first
neighbors) or, additionally, those situated far away (long range neighbors). The evo-
lution rule could take into account habitat ecological features, interaction with other
species, and possibly the behavioral aspects of the individuals. Hence, denoting by
u

(k)
j the j th cell state at k generation, a cellular automaton example is

u
(k)
j = Fj

(
u

(k−1)
j−l , . . . , u

(k−1)
j−1 , u

(k−1)
j , u

(k−1)
j+1 , . . . , u

(k−1)
j+r

)
, (1)

where the function Fj gives the evolution rule and u
(k)
j depends on the state of the r

cells situated at the right and those l cells allocated to the left at the previous gener-
ation. Once the initial state (at t = 0) is given, the automaton is updated accordingly
to the law given by (1). This produces a two-dimensional landscape composed by
a set of horizontal rows which gives the population spatial distribution at the corre-
sponding cellular automaton generation. A readable, recent, and critic reference on
this topic is given in Molofsky and Bever (2004).

3. Coupled maps. Discretization of continuous models provides an origin for these
models. As a way of example, consider a finite one-dimensional habitat, where
the population density, u(x, t), satisfies the partial differential equation (PDE) ut =
Duxx + f (u), where (x, t) ∈ [a, b]× (0, T ] and f is the growth rate. Once the space
and time intervals are discretized by: a = x0, x1, . . . , xn = b, such that xi − xi−1 =
(b − a)/n ≡ h and by t0 = 0, t1, t2, . . . , tm = T where tj+1 − tj = T/m ≡ k, respec-
tively, and denoting by ui,j the population density at (xi, tj ), a central difference
pointwise approximation for the above PDE gives the discrete coupled map

ui,j+1 = ui,j + r(ui−1,j − 2ui,j + ui+1,j ) + kh2f (ui,j ),

where r = kD/h2. By using other types of approximations for the derivatives ut and
uxx , also other coupled maps can be obtained.

Metapopulations is another family of discrete models which we will not describe
here; we just mention that this approach has been applied for the study of natural or
artificial fragmented habitats. Details on this topic can be seen in Hanski (1997, 1999)
and Market (2002).

On the other side, the continuous spatial models include explicitly space variables,
and according to space range, these can be divided in two classes:
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1. Local models. Here, the models take the form of PDE. One family of these are the
reaction-diffusion-advection equations (RDAE):

∂uj

∂t
= ∇ · (Dj∇uj ) − �v · ∇uj + fj (u1, u2, . . . , un), j = 1,2, . . . , n, (2)

where uj (�r, t) denotes the population density of the j th population at the point �r at
time t ; Dj is the dispersion coefficient of the corresponding population which might
depend on the population density, space or time variables; ∇uj is the spatial gradi-
ent of the population density; ∇· denotes the space divergence operator; �v is a drift
vector affecting the movement of the population due to different factors, for instance,
wind or water streams in a river, and fj is the density dependent population growth
rate. In order to complete the mathematical problem, the initial and boundary value
conditions must be included. Equations (2) can be derived by using two alternative
approaches.

• Continuous media. In this approach, the population—as a whole—can be seen as
a sort of fluid. Thus, the mass conservation law plus a specific law for the popu-
lation flow, �J , (the simplest one is Fick’s law: �J ∝ −∇uj ), can be used to derive
system (2). At certain space scales of description, RDAE equations could be ap-
propriate for the description of the spatiotemporal dynamics of interacting popu-
lations. In Holmes et al. (1994), Okubo and Levin (2001), and Sánchez-Garduño
(2001), the authors present a review of this approach in an ecological context.

• Random walks. On the other hand, the state variable, p(�r, t), is the probability of
an individual is at point �r in a given habitat, at time t . For a one-dimensional habi-
tat, the derivation goes as follows: splitting the habitat by a constant distance λ and
time discretization by intervals of period τ . Let R, L, and N be the probability of
moving to the right, to the left and no movement, respectively. Then, the proba-
bility of the event: “the individual is at x at time t ,” is decomposed as the sum of
probabilities of three mutually excluding events.1 The next step is to carry out the
Taylor series of p(x − λ, t − τ),p(x + λ, t − τ) and p(x, t − τ) around (x, t) up
to leading terms and using the diffusive approximation, which allows us to pass to
continuous space and time variables. At the end, a diffusion-advection equation for
p is obtained. In this approach, the incorporation of spatial features of the habitat
and perhaps some behavioral aspects of the individuals of the population is pos-
sible in the probabilities p,R,L or N . Skellam was a precursor of this approach
in ecology (see Skellam 1951, 1973). Since his pioneering papers, more work has
been carried out by other authors (see Okubo and Levin 2001; Sánchez-Garduño
2001, and Turchin 1998).

2. Nonlocal models. These models consider the influence of a population density over
a long range in the habitat into the dynamics of local population density. Some of
them take the form of integrodifferential equations (see Alt 1985) where the integral
terms contain a kernel having a precise ecological interpretation.

1These are: “the individual is at x − λ at time t − τ and move to the right,” “the individual is at x + λ at
time t − τ and move to the left” and “the individual is at x at time t − τ and stay there.”
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We should say that fundamental ecological phenomena such as dispersion (see
Holmes et al. 1994 and Okubo and Levin 2001) segregation (García-Ramos et al.
2000) and aggregation (see Sánchez-Garduño et al. 2010 and Turchin and Kareiva
1989) of interacting populations lead to important, mathematical and interpretative
problems.

The emergence of ordered structures is ubiquitous in biology covering a wide
range of areas and spatial and time scales. Those include: fetal development, coats of
mammals, pigmentation of shells, structure of social insects nests, collective swarms
of bacteria, army ants, vegetation distributions in arid and semiarid zones, etc. In
mathematical ecology, the pioneering work due to Kierstead and Slobodkin (see
Kierstead and Slobodkin 1953) whom were interested in understanding the phyto-
plankton blowing up associated with the red tide which is quite poisonous for fishes.
Apparently, phytoplankton growth is triggered by the local nutrient accumulation
among other substances which favor the organic growth. Thus, denoting by u(x, t),

the phytoplankton population density at the point x at time t , they proposed the
model ut = Duxx + ru, defined on the finite one-dimensional habitat (0,L) with
u(0, t) = u(L, t) = 0 for all t . The existence of a critical habitat size, Lc = π

√
D/r ,

is proven such that if L < Lc the phytoplankton population decreases going down
to extinction, however, it increases for L > Lc; that is, a blowing up phenomenon
occurs. A few years later, Levin and Segel and Steele (see Levin and Segel 1976 and
Steele 1974) proposed a mechanism as the responsible of the emergence of patches.
They considered two populations: phytoplankton and zooplankton represented by
P(x, t) and H(x, t) at point x and time t, respectively; additionally, a predator-prey
interaction described by a Lotka–Volterra model is take into account. Indeed, condi-
tions for ordered spatial distributions having the form of patches were obtained ac-
cording to their model. Indeed, they followed the seminal paper by the British math-
ematician Alan Mathison Turing (see Turing 1952), who proposed a morphogenetic
mechanism based on the simultaneous occurrence of reaction of substances and dif-
fusion of them. This specific mechanism occurs on the assumption of the existence
of a homogeneous state which is stable to time perturbations but unstable to spa-
tiotemporal perturbations. In fact, these two requirements impose conditions on the
reactive (interaction) and the diffusive (dispersion) parts. Whenever they are fulfilled,
the turingian morphogenetic mechanism is triggered to rise some asymptotic ordered
spatial distributions of the morphogens, also called Turing patterns. Moreover, this
mechanism has been used to describe a variety of emerging patterns in several sys-
tems. Many examples of biological systems where different type of patterns emerge
can be found in Murray (2003).

In relation with the occurrence of Turing patterns in ecological systems, the math-
ematical ecologists Akira Okubo and Simon Levin, wrote (see Okubo and Levin
2001):

In general, a diffusion process in an ecosystem tends to give rise to an uni-
form density of population in space. As a consequence, it may be expected
that diffusion, when it occurs, plays the general role of increasing stability in a
system of mixed populations and resources . . . However, there is an important
exception, known as “diffusion-induced instability” or “diffusion instability.”
This exception might not be a rare event especially in aquatic systems. Herein,
we shall explore the Turing effect in ecosystems.
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The mathematical basis of the diffusive instability in ecology has been presented
in detail by several authors. For instance, Segel and Jackson (1972) and Mimura
et al. (1979) have made it for continuous models; on the other hand, time discrete
diffusion driven instability models have been discussed by Kot and Schaffer (1986).
Additionally, recent research on patterns emergence in ecology from a mathematical
modelling point of view is also given by Malchow et al. (2007).

In this paper, we explore the existence of ordered spatiotemporal distributions in
a pollinator–plant–herbivore mathematical model defined on a rectangular region.
The model consists of three RDA equations. To begin with, we do this by consid-
ering two subsystems: pollinator–plant and herbivore–plant interactions. Finally, we
study the full pollinator–plant–herbivore system. The material contained in this pa-
per is organized as follows. Section 2 deals with the temporal and spatiotemporal
dynamics of an extreme particular case: a pollinator-plant interaction. In Sect. 3 a
herbivore–plant interaction model is considered. Section 4 contains our study of the
full pollinator–plant–herbivore interaction mathematical model. In the final section,
we summarize our findings and indicate future research directions. In addition, a cou-
ple of appendixes are included where the existence of a positive equilibrium for the
full homogeneous system and a qualitative description2 of the existence, positiveness,
and boundedness of the solution of the initial and boundary value problem associated
with the RDA system are given.

2 A Pollinator–Plant Model

The analysis we present here is carried out in two steps. Firstly, the temporal dy-
namics of a mutualistic interaction model is reviewed, where a pollinator and a plant
populations are considered. Secondly, we incorporate the space component in the
previous model and carry out some numerical simulations.

2.1 The Assumptions and the Model

It is accepted that the mutualistic interactions are ubiquitous in nature. However,
when the amount of theoretical studies on predation or competition are compared
with those on mutualism, it is found that the last one are just a few. In this lack, the
review on mutualistic studies, due to Boucher (see Boucher 1982), is an excellent
reference.

The underlying hypothesis of the mutualistic model we consider here are: (1) The
pollinators, in addition of the nectar and pollen from the plants, have other limited
sources of food, in other words, they are not vital for the pollinators the plants, (2)
The plants are pollinized exclusively by this pollinator population, i.e., they are highly
specialized and (3) The pollinator–plant interaction is described by a Holling func-
tional response of type II.3 In the present context, the pollinator rate of visits to plants

2In Sánchez-Garduño and Breña-Medina (2010), the authors present the proofs of the mathematical results
described here.
3The concepts’ functional and numerical responses had their origin in predator–prey interactions. Here,
we are borrowing the term from these, simply by considering that the qualitative properties of the function
describing the rate of visits per pollinator, are the same as those of the Holling response of type II.
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per pollinator is limited. In fact, it must be a monotonic growing function for low
plant population density but for big enough plant population density, such function
has an asymptotic behavior toward a horizontal straight line representing the maxi-
mum rate of visits of plants per pollinator.

Let a(t) and p(t) be the population density of pollinator and plants at time t ,
respectively. One model which captures the above hypothesis is:

ȧ = a (K − a) + ap

1 + p
,

(3)

ṗ = −p

2
+ ap

1 + p
,

where K is the bifurcation parameter which, in addition to be the pollinator popula-
tion carrying capacity, it also represents a measure of the preference of the pollinators
for its own food sources. As far we know, the model (3) was originally proposed by
Soberón and Martínez del Río (see Soberón and Martínez del Río 1981). They pro-
posed it on the basis of the feasible ecological interpretation of all the parameters
and expressions appearing in their original formulation. Here, we just kept the fun-
damental parameter: K . A preliminary analysis of (3) is carried out in Soberón and
Martínez del Río (1981).

2.2 The Temporal Dynamics

The dynamics associated with system (3) can be obtained by using an usual nonlin-
ear dynamical approach. Parts of this analysis can be seen in Arrowsmith and Place
(1998). The relative position of the nontrivial null-clines

p1(a) = a − K

K + 1 − a
and p2(a) = 2a − 1,

of system (3), determinates its nontrivial equilibria in the first quadrant of the phase
plane and the way in which they touch each other, gives the local phase portrait.

The values of a for which p1(a) = p2(a) are

a1, a2 = 1

2

[
(K + 1) ±

√
(K + 1)2 − 2

];

we set K∗ = √
2 − 1 and K1 = 1/2. In terms of these critical parameter values, we

summarize the temporal dynamics as follows:

1. Any solution of (3) starting from (a0,p0) with a0 ≥ 0 and p0 ≥ 0 is bounded and
nonnegative for all t .

2. System (3) has not closed trajectories.
3. The points P0 = (0,0) and P1 = (K,0) are equilibria for all K > 0: P0 is a saddle

point; P1 a local stable node for 0 < K < K1, nonhyperbolic for K = K1 and a
saddle for K > K1; meanwhile, if 0 < K < K∗, P1 is a global attractor on R

2+,
i.e., the plant’s population becomes extinct.
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4. Whenever K = K∗, there are three equilibria: P0, P1, and P ∗ = (a∗,p∗) =
(1/

√
2,

√
2 − 1). The last one is a nonhyperbolic point of saddle-node type and,

depending upon both population densities, the species persist in equilibrium or the
plants tend to extinction.

5. For K∗ < K < K1, two equilibrium points appear which come from the bifur-
cation of P ∗, one is a saddle and the other is a stable node. Depending on the
population densities, the species persist or the plants become extinct.

6. If K ≥ K1, the system has three equilibria: P0, P1, and Pr . Here, the species
persist by exhibiting a global attractor: Pr belonging R

2+.

As a consequence of item one, for small enough values of K, the pollinator pop-
ulation prefers its own food resources. Thus, the mutualistic interaction term, really
becomes important for big values of the parameter K .

Figure 1 shows the phase portrait4 of the system (3) for relevant parameter values.

2.3 The Spatiotemporal Model and the Simulations

Here, we take into account spatial effects under following hypothesis: (1) The pol-
linators population movement—at individual level—is at random, (2) The plants do
not disperse, but its spatial distribution changes because of the interaction with the
pollinators, and (3) The temporal dynamics is given by the system (3). One model
reflecting these assumptions is:

∂a

∂t
= D�a + a

(
1 − a

K

)
+ ap

1 + p
,

(4)
∂p

∂t
= −1

2
p + ap

1 + p
.

Here, a(�r, t) and p(�r, t) denote the population densities respectively at point �r of the
habitat at time t , D > 0 is the diffusivity of the pollinator population, and � denotes
the two-dimensional Laplacian operator.

Given the ecological interpretation of the variables a and p in (4), positiveness and
boundedness of the solution of an initial and boundary value problem associated with
this system is imperative. We present an overview of the proof which gives sufficient
conditions for a system which contains (4) in Appendix B. More details can be seen
in Sánchez-Garduño and Breña-Medina (2010).

As complementary to the above mentioned study, we obtained the numerical so-
lution of the nonlinear system (4), on the rectangular habitat R = {(x, y)|0 < x < a,
0 < y < b}, with initial conditions corresponding to a spatial perturbation of a station-
ary and homogeneous state of the system (4) and homogeneous Neumann boundary
conditions. Figure 2 shows our findings5 where the color scale in the spatiotemporal

4All the phase portraits contained in this paper, were done by using the free pplane software developed by
John C. Polking from Rice University.
5All the numerical solutions of the PDE systems we present in this paper were done by using the software
FlexPDE which solves the system by using the finite element method.
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Fig. 1 Phase portrait of the
system (3) for different values
of K . For the ecological
interpretation of each one, see
the text
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Fig. 2 Numerical solutions of the system (4) at different running times



Spatial Patterns in a Pollinator–Plant–Herbivore Mathematical Model

simulations we present along the paper follows the heat-like spectrum: red indicates
the highest population density values and purple corresponds to the lowest values of
the density.

In this case, the steady and homogeneous state of (4) given by the nontrivial equi-
librium of the system (3), acts as an attractor in the space of solutions of the system,
i.e., both population densities tend to the homogeneous spatial distribution as the time
goes to infinity.

3 Other Extreme Case: Plant–Herbivore Interaction

Predation is one of the most studied (experimentally and theoretically) ecological
interactions. Here, we consider one which, from a demographic perspective, can be
seen as one of predator–prey type. For interpretation purposes, this takes the form of
a plant–herbivore interaction.

3.1 The Assumptions and the Model

We consider the following hypothesis: (1) The plants have limited sources and are
the unique source of food for the herbivores, and (2) The plant–herbivore interaction
is described by a functional response of type II.

Denoting by h(t) the herbivore population density at time t , a mathematical model
which incorporates the above hypothesis is

ṗ = p

(
1 − p

K

)
− ph

(1 + p)
,

(5)

ḣ = −αβh + β
ph

(1 + p)
,

where α, β, and K are positive parameters.

3.2 The Temporal Dynamics

The nontrivial null-clines of the system (5) are

h(p) = (1 + p)

(
1 − p

K

)
and p = α

1 − α
,

with 0 < α < 1. The equilibria of the system (5) are

P0 = (0,0), P1 = (K,0) and P2 = (p̄, h̄),

where

p̄ = α

1 − α
and h̄ = (1 + p̄)

(
1 − p̄

K

)
.
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Clearly, P2 exists in the positive quadrant depending on p̄ compared with K . We set

p∗ = K − 1

2
and K̃(α) = 1 + α

1 − α
.

In what follows, we summarize the dynamics associated with the system (5). The
proof of some results can be seen in Kot (2001) and Kuznetsov (2004).

The real part, 
(λ1, λ2), of the Jacobian matrix eigenvalues of (5) at P2 is


(λ1, λ2) = αh′(p̄),

which given that 0 < α < 1, changes its sign, depending upon h′(p̄).
Observe the following cases:

1. If K ≤ α/(1−α), the herbivore population becomes extinct and that of the plants,
stabilizes at P1. This point can be a stable node or a saddle-node;

2. If K > α/(1 − α), P1 is a saddle point. Moreover, as can be seen, K̃(a) plays an
important role:

• If K < K̃(α), P2 is asymptotically stable and both species persist through a
global attractor in R

2+. For example, through damped oscillations.
• If K ≥ K̃(α), P2 is unstable and the populations coexist. Both population den-

sities tend to an isolated periodic behavior, i.e., to a stable limit cycle which
surrounds P2. The limit cycle emerges from a Hopf bifurcation.

Figure 3 shows the phase portrait of the system (5).

3.3 The Spatiotemporal Model and Simulations

For the inclusion of the spatial variables, we assume: (1) The plants do not move but
its population density changes in space because of the interaction with the herbivores,
(2) The herbivores—at individual level—move at random and (3) The temporal dy-
namics of the interaction is described by the system (5). The resulting mathematical
model is:

∂p

∂t
= p

(
1 − p

K

)
− m1hp

(s + p)
,

(6)
∂h

∂t
= D�h + m2hp

(s + p)
− ηh,

where K,m1, s,D,m2, and η are positive parameters. Here, the solution positiveness
and boundedness of an initial and homogeneous Neumann boundary value problem
associated with system (6) follows from the result appearing in Appendix B. For the
numerical simulations, we take those parameter values for which the homogeneous
system (5) has a limit cycle. Additionally, the initial conditions were a small spatial
perturbation of the steady and homogeneous state of the system (6). These are

p(�r,0) = R
(
1 + 0.2 sin(x + y) cos(x − y)

)
and

h(�r,0) = W
(
1 + 0.4 sin(2x)

)
, ∀ �r ∈ R,
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Fig. 3 Dynamics of the system
(5) for β = 1, K = 2 and
different values of α. (b) shows
the emergence of a limit cycle
from a Hopf bifurcation. See the
text

where R = 0.364 and W = 1.11 are about 10% perturbation of the homogeneous
steady state. The numerics exhibit some interesting transients, including the fact that
the herbivore population takes the qualitative initial distribution of the plants imply-
ing coexistence with the plants in the same parts of the habitat. But for big enough
time, both population densities evolve toward spotted temporal periodic oscillations.
The pulsating spots are aligned in rows. Therefore, for big enough time, at each fixed
point of the rectangular habitat the local population densities change periodically in
time as result of the Hopf bifurcation. This resembles to us the so-called breathing
patterns which already have been reported in other contexts. For instance, in Muratov
and Osipov (1996), the appearance of breathing (or pulsating) patterns in a type of
activator-inhibitor system is discussed. Figure 4 shows our numerical simulations.
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Fig. 4 Numerical solutions of the system (6) for the parameter values D = 6, K = 2, m1 = 1, m2 = 1,
s = 1, and η = 0.25
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4 The Pollinator–Plant–Herbivore Mathematical Model

In this section, we consider the full mathematical model for describing a pollinator–
plant–herbivore interaction. Following the same scheme as in previous sections, we
study the homogenous model first, and later on the nonhomogeneous one.

One important issue to being considered is the role played by a third species into
the dynamics of a mutualistic interaction already kept by two populations. Hence,
a herbivore species is added to the mutualistic interaction sustained by plants and
pollinators.

4.1 The Assumptions and the Homogeneous Model

The hypothesis for the homogeneous model are: (1) The pollinators, in addition of
having some benefits (nectar or pollen) from the plants, have other limited source
of food, (2) The plants are pollinized exclusively by this pollinator population,
(3) The pollinator–plant interaction is described by a Holling response of type II,
(4) The plants are the unique food source for the herbivores, (5) The plant–herbivore
interaction is described by a Holling response of type II, and (6) The herbivores in-
teract with the pollinators indirectly: by reducing the pollinator visits rate to plants.

A mathematical model constructed on the above hypothesis is:

ȧ = a

(
1 − a

K

)
+ g(h)k2σμap

1 + σφμ2p
,

ṗ = −γp + g(h)k1σμap

1 + σφμ2p
− m1ph

s + p
, (7)

ḣ = −δh + m2ph

s + p
,

where g ∈ C1[0,∞), g(0) = 1, g′(h) ≤ 0 and g(h) > 0 ∀ h ≥ 0 is the reduction rate
of visits of pollinators to plants which depends on the herbivore population density.
All the parameters appearing in (7) are positive and have an important ecological
interpretation. In fact, k1 is the number of fertilized ovums in each pollinator visit, σ

is the probability of visits, φ is a measure of the speed of nectar extraction, and μ is
the energetic recompense (see Jang 2002).

4.2 On the Temporal Dynamics

Because of the nonlinearity and the amount of parameters involved in the system
(7)—as far as the authors knowledge, except a few results obtained by Jang (2002)—
the dynamics of the system (7) is not completely known. Now, we are going to present
a brief review of the results obtained by Jang. Later on, we present some of the nu-
merical explorations we did.

For any parameter values, the points P0 = (0,0,0) and P1 = (K,0,0) are equilib-
ria of the system (7). The nontrivial branch of the null-clines of (7) are

f1 ≡
(

1 − a

K

)
+ g(h)k2σμp

1 + σφμ2p
= 0, f2 ≡ −γ + g(h)k1σμa

1 + σφμ2p
− m1h

s + p
= 0,
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and

f3 ≡ −δ + m2p

s + p
= 0.

An extreme case. g(h) ≡ 1. Here, whenever m2 > δ, there exists a nontrivial equilib-
rium for (7): P̄ = (ā, p̄, h̄) where

ā = K

[
1 + k2μσp̄

1 + φσμ2p̄

]
, p̄ = sδ

m2 − δ
and

h̄ = (s + p̄)

m1

[
−γ + k1μσ ā

1 + σφμ2p̄

]
.

In the following points, we summarize the local phase space of the system (7):

1. P0 is a saddle point for all parameter values. The two-dimensional stable manifold
lies in the ph plane. Therefore, if there is a pollinator population and the plant and
herbivore populations are small enough, both species become extinct;

2. P1,

• is a local attractor if μ < γ/k1σ . Hence, if the population densities of the three
species are in a small neighborhood of P1, the trajectories of (7) tend to this
point,

• is a saddle point if μ > γ/k1σ whose two-dimensional stable manifold is in the
ah plane. Therefore, for small enough population densities, plants and herbi-
vores become extinct and the pollinators population stabilizes at K .

3. Given appropriate parameter values, the point P̄ is locally asymptotically stable.

On the global analysis. Let us introduce the following definition.

Definition 4.1 The system ẋ = F(x) is called persistent, if limt→∞ xi(t) > 0 where
x(t) = (xi(t))1≤i≤n is any solution with xi(0) > 0 for 1 ≤ i ≤ n. The system is uni-
formly persistent, if there exists d > 0 such that limt→∞ xi(t) ≥ d for 1 ≤ i ≤ n and
for any solution with positive initial conditions.

The following theorem summarizes Jang’s results.

Theorem 4.1 (Cited from Jang 2002)

1. The solutions of the system (7) starting from (a0,p0, h0) with a0,p0, and h0
greater or equal zero, are not negative and bounded for all t ,

2. Let μ > μ1, then the system (7) is uniformly persist if h(p̄∗) > δ/m2,
3. All solution of the system with a(0) > 0 and p(0) > 0 converges to (ā∗, p̄∗,0) if

h(p̄∗) < δ/m2.

A particular case. Here, we consider the system (7) by choosing the particular form
for the reduction rate of visits:

g(h) = 1

1 + k3h2
, with k3 > 0,
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which has the qualitative behavior mentioned previously. In this case, the existence
of a positive unique equilibrium, (a∗,p∗, h∗) is possible to prove for system (7). See
the Appendix A. Thus, on the basis of its existence, we carried out a set of numerical
simulations.6 These allow us to see a rich dynamics supported by the system (7),
including:

• The existence of a homoclinic trajectory based at the equilibrium P = (K,0,0)

for a small enough value of K . Meanwhile, for bigger values of K, the homoclinic
loop breaks leading to other dynamical behaviors,

• The emergence of a stable limit cycle implies that the three populations remains;
that is, each population density tends to a time periodic function for a long enough
time.

• The existence of a global attractor. In this case, the populations persist and their
respective densities tend to a constant value as the time goes to infinity.

These behaviors were obtained by increasing the values of K . Figure 5 contains some
phase portraits of (7) for several K values.

4.3 On the Spatiotemporal Dynamics

For the derivation of the mathematical model, we consider the following assumptions:
(1) The pollinators movement has two components: its “own” at random individual
movement and a drift (advection) due to, for instance, the wind. Here, we are going
to consider a constant advection velocity, �v, (2) At individual level, the herbivores
also move at random and their movement is supposed much slower than that of the
pollinators, (3) The spatial distribution of the plants changes because the interaction
with the pollinator and herbivore populations, and (4) The population interactions are
described by the system (7). A model which captures these assumptions is given by:

∂a

∂t
= D1�a − �v · ∇a + a

(
1 − a

K

)
+ g(h)k2σμap

1 + σφμ2p
,

∂p

∂t
= −γp + g(h)k1σμap

1 + σφμ2p
− m1ph

s + p
, (8)

∂h

∂t
= D2�h − δh + m2ph

s + p
,

for all (x, y) ∈ R defined previously and t > 0.
Determine and classify existence of possible ordered spatial structures (patterns)

associated with the problem (8) corresponding to different set of feasible parameter
values and initial and boundary value conditions is an important challenge even from
an interpretative point of view. As far the authors knowledge, this problem is not
solved yet. What we present here are just some preliminary results which come from
the numerical simulations we have performed. For this purpose, we used the para-
meter values for which the temporal dynamics suggests the existence of a globally

6All the three-dimensional space phases contained in this paper were done by using the ODE45 MATLAB,
version 7.0 routine.
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Fig. 5 Phase portrait of the system (7) corresponding to different parameter values

asymptotically stable equilibrium. The initial conditions along the rest of the paper
are:

a(�r,0) = U
(
1 + 0.9 sin(2y)

)
, p(�r,0) = W

(
1 + 0.9 sin(2x)

)
,

and

h(�r,0) = R
(
1 + 0.9 sin(x + y) cos(x − y)

)
,

where (U,W,R) = (0.25,0.01,0.01). Note that the initial conditions we selected,
correspond to a spatial perturbation of the homogeneous state which our numerical
simulations exhibit it as a global attractor.
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Nevertheless, for our particular problem, we have done this analysis using com-
parison techniques based on the concepts of sub and supersolutions. In Appendix B,
we present an overview of the proofs, and in Sánchez-Garduño and Breña-Medina
(2010) the reader will find full technical details.

In order to see the separate effect of the diffusion and the advection terms into
the final spatial distributions of the populations described by (8) on the region on R,
we consider each separate process by taking into account two types of homogeneous
boundary conditions: Dirichlet and Neumann.

4.3.1 Numerical Simulations of the Reaction–Diffusion Model

Here, we consider the system (8) with �v = (0,0), D1 = 3, D2 = D1/10, and for
each boundary condition mentioned above.

The homogeneous Dirichlet boundary condition corresponds to the case where
no individuals of any population is present on ∂R for all t . Figures 6 and 7 show
the result of our numerical simulations. Those show: the initial, some transients, and
the final population distributions, respectively. As can be seen in above mentioned
figures, is a remarkable increasing of the plant population in the central part of the
region R originating a migratory movement of the pollinator and herbivore popu-
lations toward the same area. Moreover, after a very long time (104 iterations), the
ecological coexistence of the three populations, is observed and they do so in such
a way that no significant difference between a transient spatial distribution and the
final distributions of the populations are observed. Even though a set of different ini-
tial conditions were considered, the result of the numerics in all cases showed no
substantial differences in the final distribution of the populations.

The homogeneous Neumann boundary condition corresponds to the case where
there is not flux of the populations on ∂R for all t . By considering the same parame-
ter values as in the previous case, an interesting phenomenon is shown. As a matter of
fact, the population density distributions evolve in such way that pollinators popula-
tion moves toward places where the plant population density is higher; in other words,
an aggregation phenomena seems to appear. This originates a slow herbivore popu-
lation movement toward the same region, as though they were chasing pollinators.
As result of this, the plant population dramatically decreases in these areas. Never-
theless, in those regions where the presence of herbivores is less the plant population
density increases as had been suspected, which stimulates a pollinator movement to
the same areas which, consequently, originates a herbivores displacement. Hence, a
periodical traveling wave-like dynamic from left to right for each population density
can be observed. See Figs. 8 and 9.

4.3.2 Numerical Simulations of the Reaction–Diffusion–Advection Model

As previously, system (8) with �v = (v,0), D1 = 3, D2 = D1/10, and v = 3, for
each boundary condition mentioned above, we consider the same initial conditions
(Figs. 10(a), 10(c), and 10(e)). In addition, ought to transport term, determined by the
vector �v = (v,0),—in addition to its “natural” random movement—there is a drift in
the movement of the pollinators population which points vector �v out.
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Fig. 6 Numerical solutions of an initial and homogeneous Dirichlet boundary values problem associated
with the RD system (8) at different snapshots
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Fig. 7 Numerical solutions of an initial and homogeneous Dirichlet boundary values problem associated
with the RD system (8) at different snapshots
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Fig. 8 Numerical solutions of an initial and homogeneous Neumann boundary values problem associated
with the RD system (8) at different snapshots
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Fig. 9 Numerical solutions of an initial and homogeneous Neumann boundary values problem associated
with the RD system (8) at different snapshots
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Fig. 10 Numerical solutions of an initial and homogeneous Dirichlet boundary values problem associated
with the RDA system (8) with �v = (v,0) at different snapshots
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For our first set of numerical simulations, homogeneous Dirichlet boundary con-
ditions are considered. Results can be seen in the Figs. 10 and 11 which show the
spatial distribution of the three populations at different running times, namely the
initial, an intermediate, and big enough, respectively. As a matter of fact, not only in-
teresting transient distributions are observed but also the final ones. As a consequence
of the advection term and boundary conditions, the pollinator population is driven to
the domain’s right side, however, the three populations tend to localize in the domain
core.

Now, let us consider homogeneous Neumann boundary conditions. The initial,
transient, and final distributions—as result of our numerical simulations—can be seen
in Figs. 12 and 13. They show some final spatial pattern features which, in fact,
have some similitude with the no-advection case. These take the form of traveling
wave-like patterns for the three population densities. However, a different transient
dynamic is exhibited as well. Indeed, as can be seen in Figs. 12(b), 12(d), and 12(f),
these waves start with a high density region localized in the lower left corner of R
and smoothly travel from left to right side of the rectangle. Additionally, the plant
population density traveling wave moves quicker than the others, then is followed by
the pollinator and herbivore population waves. This specific traveling wave behavior
was expected because the drift produced by the transport term on the gradient of the
pollinator population point out horizontally from left to right, as for −�v ·∇a provides
this flow. However, a periodical traveling wave is seen in a similar fashion as that in
the nonadvection term case. See Fig. 13.

Moreover, additional numerical simulations were carried out by using different
constant vectors �v. In all cases, the same qualitative behavior described previously
was observed.

5 Conclusions and Discussion

In this final section, we recapitulate our findings. Also, some problems which we
consider it is worth to investigate in this field are listed.

1. The specific numerical simulations we performed on the full pollinator-plant-
herbivore mathematical model show that the spatial distribution of the popula-
tions over the habitat during the running time of the software FlexPDE, strongly
depends upon the competition between the diffusion (in the pollinators and herbi-
vores) and advection processes in the pollinators. The dominance of one process
or another, depends on the selected value of D1, D2 and the magnitude of the
advective velocity �v.

2. The homogeneous boundary conditions play an important role in the spatial distri-
bution of the populations. In fact, the homogeneous Dirichlet conditions force the
three populations to abandon the borders initiating a migratory movement toward
the central part of the region R; meanwhile the homogeneous Neumann condi-
tions allow the populations to survive over R exhibiting different heterogeneous
distribution patterns. Nonetheless, a theoretical study is required.

3. In this paper, the Holling response of type II was abundantly used. However, the
so-called Holling response of type IV has been extensively documented in the
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Fig. 11 Numerical solutions of an initial and homogeneous Dirichlet boundary values problem associated
with the RDA system (8) with �v = (v,0) at different snapshots
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Fig. 12 Numerical solutions of an initial and homogeneous Neumann boundary values problem associated
with the RDA system (8) with �v = (v,0) at different snapshots
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Fig. 13 Numerical solutions of an initial and homogeneous Neumann boundary values problem associated
with the RDA system (8) with �v = (v,0) at different snapshots
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ecological literature (see Collings 1997 and Crawley 1992). According which, the
predation rate per predator is a monotone increasing function for small enough
prey density values becoming a monotone decreasing function for larger prey
density values. The incorporation of this type of functional response into the
herbivore-plant interaction should result in an interesting problem. This is cur-
rently studied by one of us and his students (see Quilantán 2010 and Velázquez
2008).

4. Some theoretical problems associated with the RDA system presented here remain
to be solved. These include a detailed local and global bifurcation analysis for the
homogeneous pollinator-plant-herbivore mathematical model. Also, an analysis
with the aim of predicting the possible spatial patterns of the model, is required.

5. In a more realistic situation, the pollinator and herbivore movement should be
toward those places of the habitat where the population density of plants is high.
In such a case, instead of having constant diffusion coefficients in the pollinator
and herbivore equations, those should be plant population, and even spatial and
temporal dependent. Indeed, the incorporation of this factor—in addition to being
an important theoretical problem—also has relevance in interpretative terms.

Acknowledgements FSG thanks the División Académica de Ciencias Básicas de la Universidad Juárez
Autónoma de Tabasco (UJAT) for the hospitality and facilities provided to him during a sabbatical semester
he spent there.

Appendix A: The Existence of a Positive Equilibrium

In this Appendix, the existence of a positive equilibrium for the system (7) is shown,
where g(h) = 1/(1 + k3h

2). For this aim, let us simplify the notation in (7) by intro-
ducing β , α1, and α2 as follows: β = σφμ2, α1 = k2σμ and α2 = k1σμ.

Setting the herbivore field in (7) equal zero, we obtain p = p∗ = sδ/(m2 − δ),
where the condition m2 > δ is required in order to guarantee p > 0, which in the
phase space—for each positive p—defines a plane parallel to the plane ap. Then in
order to seek equilibrium points, we search them on the null-clines projections onto
the plane p ≡ p∗. That is, given a fixed p∗ value, the equation f1 = 0 implies

g(h∗) = (a∗ − K)(1 + βp∗)
Kα1p∗ , (A.1)

where a∗ > K . Now, by writing down the explicit form of g in (A.1), we find a first
relationship between h∗ and a∗,

h∗
1(a

∗) =
√

Kα1p∗ − (a∗ − K)(1 + βp∗)
k3(a∗ − K)(1 + βp∗)

, (A.2)

which defines a positive function for h∗
1, whenever a∗ satisfies the inequality

K < a∗ <

[
1 + (α1 + β)p∗

1 + βp∗

]
K.
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On the other hand, another relationship for h∗ and a∗ is obtained from the equality
f2 = 0, namely

h∗
2(a

∗) = (s + p∗)
m1

[
α2

Kα1p∗ (a∗ − K)a∗ − γ

]
, (A.3)

which defining a∗
c as

a∗
c := K

2
+ 1

2

√

K2 + 4γKα1p∗
α2

,

guaranties positive values for h∗
2 for all a∗ > a∗

c . Due to this fact, (A.2) is a real
function and a∗

c > K , inequalities

a∗
c < a∗ <

[
1 + (α1 + β)p∗

1 + βp∗

]
K, (A.4)

with

K >
α1γ (1 + βp∗)2 p∗

α2 (1 + (α1 + β)p∗) (2 + (α1 + 2β)p∗)
, (A.5)

must be held in order to assure positiveness for h∗
1 and h∗

2 on the interval where a∗
varies.

Therefore, once given fixed p∗ values, a∗ and h∗ must satisfy (A.2) and (A.3).
Figure 14 shows the behavior of h∗

1 and h∗
2 as a function of a∗ for different values of

parameter K . As it can be seen, for each K—and appropriate parameter values given
by m2 > δ, (A.4), and (A.5)—those graphs meet only in exactly one point belonging
to the first quadrant. In consequence, system (7) has exactly one equilibrium point in
the first positive octant, as is claimed.

Appendix B: Existence, Positiveness and Boundedness

Given a mathematical problem, searching the existence and uniqueness of solution
for it is a quite important, mathematical and interpretative points of view, objective.
In our case, because of the ecological interpretation of the model variables, we should
guarantee positiveness and boundedness of the solution of the initial and boundary
value problem. This Appendix deals with them. A schematic and qualitative de-
scription of results—a complete report, can be seen in Sánchez-Garduño and Breña-
Medina (2010)—is presented. Comparison techniques approach, where the concepts
of quasimonotone vector fields, sub and supersolutions of parabolic systems, is used.

The following initial and boundary condition problem is examined:

∂a

∂t
= D1�a − �v · ∇a + a

(
1 − a

K

)
+ g(h)k2σμap

1 + σφμ2p
,

∂p

∂t
= −γp + g(h)k1σμap

1 + σφμ2p
− m1ph

s + p
, (B.1)
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Fig. 14 Graphical representation of the positive equilibrium point—dots—given by (A.2) and
(A.3)—decreasing and increasing curves, respectively—for soaring values of parameter K . They lay on
the plane p = p∗ for positive a and h. See the text for details

∂h

∂t
= D2�h − δh + m2ph

s + p
,

for all (x, y) ∈ R and t > 0, with homogeneous Neumann boundary conditions on
∂R. In order to simplify system (8) notation, c1, c2, and c3 are introduced as fol-
lows: c1 = k2σϕμ, c2 = ϕσμ2, and c3 = k1σϕμ. Now, we define the vector field
�F : R

3 → R
3 whose components are:

F1(a,p,h) = a

(
1 − a

K

)
+ g(h)

c1ap

1 + c2p
,

F2(a,p,h) = −γp − m2ph

s + p
+ g(h)

c3ap

1 + c2p

and

F3(p,h) = −ηh + m1ph

s + p
.

It can be seen that the nonlinear functions Fj with j = 1,2,3, belong the set C1
R

3+
,

and consequently, they have bounded first partial derivatives on R
3+. They also are α-

Holder continuous functions of order one. Observe that, for all greater or equal zero
values of a,p, and h, the following inequalities hold:

∂F1

∂p
≥ 0,

∂F1

∂h
≤ 0,

∂F2

∂a
≥ 0,

∂F2

∂h
≤ 0,

∂F3

∂p
≥ 0, and

∂F3

∂a
= 0,
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hence, the vector field �F , having components Fj , is quasimonotone7 on the R
3 first

octant.
Now, let us denote by �̂u = (â, p̂, ĥ) and �̌u = (ǎ, p̌, ȟ) the supersolutions and sub-

solutions, respectively. These are such that �̂u ≥ �̌u for all (�x, t) ∈ R. By definition,
�̂u and �̌u must satisfy the following initial and boundary value problems, which are
expressed in terms of differential inequalities (see Pao 1992, Chap. 8, Sect. 8.8 for
details):

∂â

∂t
− D1�â + �v · ∇â ≥ â

(
1 − â

K

)
+ g(ȟ)

c1âp̂

1 + c2p̂
,

∂p̂

∂t
≥ −γ p̂ − m2p̂ȟ

s + p̂
+ g(ȟ)

c3âp̂

1 + c2p̂
, (B.2)

∂ĥ

∂t
− D2�ĥ ≥ −ηĥ + m1p̂ĥ

s + p̂
.

and

∂ǎ

∂t
− D1�ǎ + �v · ∇ǎ ≤ ǎ

(
1 − ǎ

K

)
+ g(ĥ)

c1ǎp̌

1 + c2p̌
,

∂p̌

∂t
≤ −γ p̌ − m2p̌ĥ

s + p̌
+ g(ĥ)

c3ǎp̌

1 + c2p̌
, (B.3)

∂ȟ

∂t
− D2�ȟ ≤ −ηȟ + m1p̌ȟ

s + p̌
,

with the initial conditions:

â(0, �x) ≥ a0(�x) ≥ ǎ(0, �x); p̂(0, �x) ≥ p0(�x) ≥ p̌(0, �x);
ĥ(0, �x) ≥ h0(�x) ≥ ȟ(0, �x)

and boundary conditions:

∂â

∂n
≥ 0 ≥ ∂ǎ

∂n
; ∂p̂

∂n
≥ 0 ≥ ∂p̌

∂n
; ∂ĥ

∂n
≥ 0 ≥ ∂ȟ

∂n
,

where ∂(·)/∂n ≡ ∇(·) · �n, and �n is the outer normal vector on ∂R.
With the aim of finding �̂u and �̌u, let (Ã, P̃ , H̃ ) be the solution of the initial and

boundary values problem

∂A

∂t
− D1�A + �v · ∇A = A

(
1 − A

K

)
,

∂P

∂t
= −γP − m2H, (B.4)

7This happens whenever the sign of ∂Fj /∂xi is different for i �= j , where x1 = a, x2 = p and x3 = h.
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∂H

∂t
− D2�H = (−η + m1)H,

with boundary conditions

∂A

∂n
= 0,

∂P

∂n
= 0, and

∂H

∂n
= 0, on ∂R

and positive initial conditions

A(0, �x) = a0(�x); P(0, �x) = p0(�x); H(0, �x) = h0(�x) ∀ �x ∈ R.

We can prove the following proposition.

Proposition B.1 There exist k∗ and positive constants ρ1 and ρ2 such that the com-
ponents P̃ and H̃ of the solution, (Ã, P̃ , H̃ ), of problem (B.4) satisfy

0 ≤ P̃ ≤ ρ1e
−γ t , 0 ≤ H̃ ≤ ρ2e

−(k2∗+η−m1)t . (B.5)

Proof The linearity of the last two equations of the system (B.4) allows us to solve
them in a straightforward way. In fact, by using the separation variables method for
solving the equation for H , we obtain

H̃ (t, �x) =
∑

k∈Z
2+

ch
k exp

(−(k2 + η − m1)t
)
Xk(�x),

where ch
k are the Fourier expansion coefficients of the function h0 in terms of the

eigenfunctions, Xk(�x), of the corresponding linear Sturm–Liouville problem

D2�H + k2H = 0 in R,
∂H

∂n
= 0 on ∂R,

that is,

h0(�x) =
∑

k∈Z
2+

ch
kXk(�x),

where k2 := k2
1 + k2

2 . Hence, by choosing the main eigenvalue k∗, using the positivity
and continuity of h0(�x) and Parseval’s identity, we find ρ2 > 0 (indeed,

∑
k∈Z

2+ ch
k <

ρ2) and then a bound for H̃ , as required.
Following a similar treatment, one can establish the existence of the bound ρ1. In

fact, by writing down the expression for H̃ in the equation for P in (B.4), using the
linearity of such equation we obtain P̃ . Thus, let us denote by c

p
k the corresponding

coefficients of the series representation for P̃ , then we have
∑

k∈Z
2+ c

p
k < ρ1; there-

fore the appropriate bound for P̃ follows. Consequently, as had been claimed, the
bounds are valid for all {t > 0} × R. Note that the bounds for H̃ and P̃ are valid
whenever the inequality 0 < γ < k2 + η − m1 holds. �
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Now, let us consider the equation for A in (B.4). Indeed, this one has two homoge-
neous and stationary solutions: A∗

1(t, �x) ≡ 0 and A∗
2(t, �x) ≡ K . In order to determine

their stability, we consider the following problem:

−D1�A + �v · ∇A =A

(
1 − A

K

)
, on R,

(B.6)
∂A

∂n
=0 on ∂R.

Hence, we define the functional space, H, whose elements are square integrable func-
tions on R satisfying homogeneous Neumann boundary conditions, i.e.,

H :=
{
u ∈ L2(R)

∣∣∣∣
∂u

∂n
= 0 on ∂R

}
, (B.7)

where the inner product

〈u,v〉 :=
∫

R
u(�x)v(�x) d �x,

is introduced. We also define the operator L : H → C(R) such that L := −D1� + �v · ∇ .
In these terms, the problem (B.6) can be reformulated as the following nonlinear
eigenvalue problem:

LA = A

(
1 − A

K

)
, on H. (B.8)

As can be verified, L is an elliptic and hermitian operator. Therefore, its eigenvalues
are real numbers and the corresponding set of eigenfunctions form an orthonormal
basis of H.

Now, let ϕ be the eigenfunction of L corresponding to its main eigenvalue, λ. By
multiplying both sides of (B.8) by ϕ and integrating over R, we obtain

λ 〈A,ϕ〉 = 〈A,Lϕ〉 = 〈LA,ϕ〉 =
〈
A

(
1 − A

K

)
, ϕ

〉
,

which can be written down in the following simple way:

(λ − 1) 〈A,ϕ〉 = − 1

K

〈
A2, ϕ

〉
, (B.9)

which implies that

lim
t→∞A(t, �x) =

{
0 for λ ≥ 1,

K for λ < 1.

However, because of the homogeneous Neumann boundary conditions, the main
eigenvalue λ must be zero and the corresponding eigenfunction must be ϕ = 1.
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Hence, the solution, A, for problem (B.6) is uniformly bounded in R and satisfies

lim
t→∞A(t, �x) = K. (B.10)

Therefore, the vectors �̂u ≡ (Ã, P̃ , H̃ ) and �̌u ≡ (0,0,0), are supersolution and
subsolution for the system (B.1), respectively, as can be verified straightforwardly.
Then by using Theorem 8.1 in Pao (1992), there exists a unique no negative solution,
(a(t, �x),p(t, �x),h(t, �x)), for the problem (B.1) satisfying

(0,0,0) ≤ (
a(t, �x),p(t, �x),h(t, �x)

) ≤ (
Ã(t, �x), P̃ (t, �x), H̃ (t, �x)

)
, (B.11)

for all (t, �x) ∈ R+ × R.
Furthermore, from (B.5) follows

(
a(t, �x),p(t, �x),h(t, �x)

) ≤ (
A,ρ1e

−γ t , ρ2e
−(k2+η−m1)t

)
, (B.12)

for all {t > 0} × R. Additionally, if t → ∞, the following inequality holds:

(0,0,0) ≤ (
a(t, �x),p(t, �x),h(t, �x)

) ≤ (K,0,0),

whenever k2 + η > m1. In the case m1 → k2 + η, we have

(0,0,0) ≤ (
a(t, �x),p(t, �x),h(t, �x)

) ≤ (K,ρ1, ρ2).

Collecting all the above results, what we have really proven is the global existence
of solution for the problem (8) and its asymptotic behavior as well. We state it as
follows.

Theorem B.1 Given the initial conditions (a0(�x),p0(�x),h0(�x)) ≥ (0,0,0), the
problem (B.1), has a unique global solution (a(t, �x),p(t, �x),h(t, �x)), satisfying
(B.12). This solution converges to (K,0,0) if t → ∞ and k2 + η > m1. In case
m1 → k2 + η, then the solution converges to (K,ρ1, ρ2).

Remark Note that previous theorem tells us that the problem (8) has bounded and
positive solutions for all (t, �x) ∈ R+ × R.
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