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Subcritical Turing bifurcations of reaction-diffusion systems in large domains lead to spontaneous
onset of well-developed localised patterns via the homoclinic snaking mechanism. This phenomenon
is shown to occur naturally when balancing source and loss effects are included in a typical reaction-
diffusion system, leading to a super/subcritical transition. Implications are discussed for a range of
physical problems, arguing that subcriticality leads to naturally robust phase transitions to localised
patterns.

I. INTRODUCTION

Reaction-diffusion systems are known to give rise to
a wide variety of stationary and oscillatory patterns,
see e.g. [1–3]. The primary mechanisms for explaining
transition from quiescent to patterned states is the insta-
bility first described by Alan Turing [4]. Such patterns
are used to explain diverse physical phenomena, such as
gas discharge dynamics [5], active fluid behaviour [6] and
tumour growth [7]. Now diffusion-driven instability, or
Turing bifurcation, is a key part of any graduate course
on nonlinear far-from equilibrium physics or biology. For
systems in large domains however, many different wave
numbers can become unstable in Turing bifurcations for
nearby parameter values and mode interactions can lead
to a remarkable richness in patterns and their dynamics,
see e.g. [8].

A different explanation of localised pattern formation
has emerged in recent years; the so-called homoclinic
snaking mechanism [9, 10]. The 1D generalised Swift–
Hohenberg equation with competing nonlinear terms is a
canonical model for such analysis [11, 12]. In 2D a rich-
ness of localised stripy, spotty, hexagonal, square-wave
and target-like patterns have been observed [13–15]. The
mechanism has been shown to underlie many physical ob-
servations such as the onset of turbulent spots in plain
Couette flow [16], stationary patterns in binary convec-
tion [17] and localised modes in optical cavities [18].

One of the distinctions between the homoclinic snaking
and Turing bifurcation pattern formation theories is that
the Swift–Hohenberg equation has variational structure,
which can be linked to the free energy of the system.
General systems of reaction diffusion equations for which
the Turing mechanism applies do not typically have such
variational structure. However, the snaking mechanism
still applies to Swift–Hohenberg equations with broken
variational structure [19], provided spatial reversibility is
retained, albeit stationary asymmetric patterns are lost.

The purpose of this paper then is to show how the con-
nection between homoclinic snaking and Turing instabil-
ity analysis gives a robust explanation for the formation
of localised patterns in reaction-diffusion systems. We
show that this robustness arises from inclusion of source

and loss terms in reaction-diffusion models, which real-
istic effects are often ignored in canonical models. For
example, a model equivalent to the system we study be-
low but without source and loss terms gives rise to wave
pinning but no localised patterns [20]. Inclusion of such
terms naturally breaks material conservation, paves the
way for effective competing nonlinear terms and in turn
this allows Turing bifurcations to become sub-critical.
We show that this subcriticality is equivalent to the key
condition for homoclinic snaking to occur in long do-
mains (see also [13]). Hence, upon considering long do-
mains, we can set the backbone conditions under which
reaction-diffusion systems naturally give rise to spots and
pulses, rather to than just spatially extended patterns
(see also [3] for further experimental and theoretical evi-
dence).

It is worth mentioning earlier related work of Yochelis
et al. [21] who performed numerical bifurcation analy-
sis on the Gierer–Meinhardt system, which includes a
rational nonlinearity. They also found the existence of
a bistability region and a subcritical Turing bifurcation
that leads to homoclinic snaking; see also [22] for further
details. The novelty of the present paper is to show that
such scenarios are in some sense generic and can occur
for a pure-power nonlinear system, given the presence of
source and loss terms.

II. LOCAL ANALYSIS

For the ease of explanation, we shall perform our de-
tailed calculations in 1D in space. Extension to higher
spatial dimension is in principle possible as we shall indi-
cate in what follows, although there are additional con-
siderations due to the range of different spatial sym-
metries of underlying patterns, stripes, rolls, hexagonal
lattices, among others, see [14, 15, 23]. We shall also
apply the theory to reaction-diffusion systems with just
two interacting species and a single nonlinear interaction
term. Application to more complex systems is in princi-
ple straightforward, because the theory is built upon the
principle of normal-form reduction.
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Consider a reaction-diffusion system

Ut = D1Uxx + F (U, V ;µ) , (1a)
Vt = D2Vxx +G(U, V ;µ) , (1b)

for x ∈ (−L/2, L/2), subject to homogeneous Neumann
boundary conditions. Here, parameters D1 and D2 are
diffusion coefficients and F and G are sufficiently smooth
functions. Without loss of generality timescales have
been scaled to unity, but the length scale L is retained.

The linear analysis provides of the usual conditions
under which Turing bifurcations occur, see [2]. Thus,
suppose there exists an isolated homogeneous equilibrium
(U, V )T = (U0, V0)T . Upon substituting the incremental
variables U = U0 +u and V = V0 + v into system (1), we
obtain(

ut
vt

)
=

(
D1uxx
D2vxx

)
+ A(µ)

(
u
v

)
+

(
f(u, v;µ)
g(u, v;µ)

)
(2)

where A = {aij} with a11(µ) = FU , a12(µ) = FV ,
a21(µ) = GU , a22(µ) = GV evaluated at the steady
state and f and g gather all remaining higher-order
terms. Under the usual assumptions of Turing bifurca-
tion analysis, we first need to assume that the homoge-
neous steady state is stable in the absence of diffusion;
that is traceA < 0 and detA > 0.

To find diffusion-driven instability with spatial
wavenumber κ we look for modes of the form

cos (κ(x− L/2))

(
C1

C2

)
, C2

1 + C2
2 > 0 , (3)

where κ = κm = mπ/L for some positive integer mode
number m. This leads to the search for zero eigenvalues
λ of the matrix

Aκ(µ) =

(
a11 −D1κ

2 a12

a21 a22 −D2κ
2

)
, (4)

with wavenumber κ =
√

(D2a11 +D1a22)/(D1D1). The
condition for instability is that κ is real, which is guaran-
teed for a stable equilibrium (with sign (a11a22) < 0) if
D1D2 � max

{
D2

1, D
2
2

}
. Without loss of generality, sup-

pose a22 < 0 and that D1 � D2 which, in comparison to
the V component, implies that the U component diffuses
slowly.

We now perform a proper comparison between the two
theories in question, in the case of a long domain L �
1. We suppose that at parameter value µ = µc there
is a double zero eigenvalue of Aκ, corresponding to a
large mode number mc, not necessarily an integer. The
condition for such a double root is

(D2a11 +D1a22)2 = 4D1D2 detA. (5)

On the one hand, for a L� 1 there will be a large number
of Turing bifurcations for nearby κ-values corresponding
to κ = mπ/L for integers m close to mc. Generically,
µ will depend quadratically on κ close to µc, which would
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FIG. 1. (Color online) The equivalence between (a) the mode
numbers accumulation point of Turing bifurcations and (b) a
Hamiltonian–Hopf bifurcation point for long domains.

imply a double accumulation of Turing bifurcations; one
family corresponding to higher wavenumbers κ > κc, the
other to lower wavenumbers κ < κc; see in Fig. 1(a)
the mode numbers m which correspond to zeros of the
dispersion relation as µ tends towards µc.

Alternatively, in the limit L → ∞, so-called spatial
dynamics can be applied (see e.g. [9]) where steady states
(U(x, t), V (x, t))T = (u(x), v(x))T of (1) are sought by
considering the ODE system on the real line

D1uxx + F (u, v;µ) = 0 , D2vxx +G(u, v;µ) = 0 ,

as a four-dimensional dynamical system in ‘time’ x. As
such, the symmetry (ux, vx)T → (−ux,−vx)T and x →
−x corresponds to a spatial reversibility. In this context,
a homogeneous steady state (U0, V0)T of the PDE corre-
sponds to an equilibrium (u, ux, v, vx)T = (U0, 0, V0, 0)T

within the fixed point set of the reversibility. The lin-
earisation of the system about such an equilibrium would
take the form(

uxx
vxx

)
+

(
a11/D1 a12/D1

a21/D2 a22/D2

)(
u
v

)
=

(
0
0

)
. (6)

Such an equilibrium will undergo a transition from be-
ing hyperbolic to elliptic at a Hamiltonian–Hopf bifur-
cation (also known as a reversible 1:1 resonance) [24]
which occurs, under suitable non-degeneracy conditions,
when there is a double pair of complex conjugate eigen-
values ±iω of the Jacobian in (6). Upon substituting
(u, v)T = (A,B)T exp (iωx) into (6), we find that we need
a double root to

D1D2ω
4 − (D2a11 +D1a22)ω2 + detA = 0 ,

which leads to precisely the same condition for a fold Tur-
ing points with respect to κ, namely equality as in (5);
see Fig. 1(b). It is straightforward to show that the con-
dition for a criticality of the Turing bifurcation at the
double root is precisely the same as the condition for
the criticality of the corresponding Hamiltonian–Hopf;
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see e.g. [25]. Both problems may be expressed as via an
amplitude equation whose real part reads [24]

Z ′′(ξ) = q1(µ− µc)Z + q3Z|Z|2 + q5Z|Z|4 . (7)

A key prediction of the homoclinic snaking mecha-
nism [10] is the birth of a spatially localised mode (a ho-
moclinic orbit in space x) if the Hamiltonian–Hopf bifur-
cation is subcritical, q1q3 > 0. For small q1q3 > 0, then,
provided q1q5 < 0, an unfolding of the normal form shows
that there is a heteroclinic connection from a background
state to a non-trivial periodic orbit. Taking account of
beyond-all-orders terms in the normal form [26, 27] en-
ables an analysis to be undertaken in which we find in-
finitely many homoclinic orbits arranged on two closed
curves; see Fig. 3(b), below.

III. ILLUSTRATION FOR A GENERALISED
SCHNAKENBERG SYSTEM

In order to illustrate our findings, we here consider
the generalised Schnakenberg system, which is a spatially
homogeneous form of a model proposed in [28] of pat-
tern formation via interaction between active U and in-
active V small G-proteins in sub-cellular-level biological
morphogenesis:

Ut = D1∇2U + k2U
2V − (c+ r)U + hV , (8a)

Vt = D2∇2V − k2U
2V + cU − hV + b , (8b)

in which all parameters are taken to be positive. Here the
model models a non-reversible autocatalytic process, and
differs from the standard Schnakenberg and Gray–Scott
systems through the presence of a production term b of
the inactive component and removal rate r of the acti-
vated component. Notice that, as can easily be shown,
otherwise Turing bifurcations are always supercritical in
straightforward Schnakenberg and Gray–Scott systems.

There is a unique homogeneous equilibrium

U0 ≡
b

r
, V0 ≡

br(c+ r)

k2b2 + hr2
. (9)

Upon substituting the incremental variables U = U0 + u
and V = V0 + v into system (8) in 1D, we get a system
of the form (2) where the coefficients of A are given by

a11 =
(c+ r)

(
k2b

2 − hr2
)

k2b2 + hr2
, (10a)

a12 = −a22 =
k2b

2 + hr2

r2
, (10b)

a21 =
chr2 − k2b

2 (c+ 2r)

k2b2 + hr2
. (10c)

and the nonlinear terms(
f
g

)
≡ k2

(
u2v + V0u

2 + 2U0uv
)( 1
−1

)
. (11)
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FIG. 2. (Color online) (a) Dispersion relation of Aκ (µ) re-
stricted to the eigenspace spanned by modes of the form (3).
The bold solid curve corresponds to where a double root
of det [Aκ (µ)] = 0 occurs. (b) Bifurcation diagram and pitch-
fork criticality condition; stable branches are shown as solid
lines, the filled circle at k2 = 1.4369 corresponds to a sub-
critical bifurcation, and the square at k2 = 1.5258 to a su-
percritical bifurcation. The subcritical branch undergoes to
a fold bifurcation (LP). The pitchfork criticality condition is
depicted as a (blue) heavily dashed line, where the critical-
ity transition is indicated by a (red) vertical dashed line at
k2 = 1.5226.

Note that the nonlinearity contains both quadratic and
cubic terms when written in these co-ordinates. It is
straightforward to show that the steady state (U0, V0)

T

is asymptotically stable in the absence of diffusion pro-
vided c+ r < 8h.

Fig. 2(a) shows the dispersion relation as function of
squared wavenumber κ2

m, for several values of a bifurca-
tion parameter k2. In this and unless otherwise stated
in what follows we use parameter values k2 ∈ (0, 5) and
b = 1, c = 1, r = 1, h = 1, D1 = 0.1, D2 = 10.

To calculate the criticality condition of the Turing
instabilities of (8), we follow a Lyapunov–Schmidt re-
duction method [29]. Upon obtaining the steady-state
smooth functional φ = φ (U, V, µ), which comes from set-
ting ut and vt to zero, and hence defining the bifurcation
function g (z, µ) ≡ 〈w∗,φ (zw, µ)〉 at the steady-state
w = (u− U0, v − V0)

T , the result is a so-called bifurca-
tion equation g = 0, the leading-order expansion of which
can be written

g(z, µ) = q1µz + q3z
3 + q5z

5 +O
(
µ2z, µz3

)
. (12)

Note that the form of g is identical to the right-hand
side of the amplitude equation (7). The bifurcation pa-
rameter here is defined as µ = k2 − k2c and the scalar
variable z parametrises the amplitude of the compo-
nent of the Turing pattern in the kernel of the matrix
Aκ (µ) = −Dκ2 + A, where D is the diffusivity matrix.
The calculation of the coefficients qi is straightforward
but lengthy, full details are available in [30], we omit the
details for brevity.

Note that such bifurcation equation (12) can be derived
in principle in a higher dimensional spatial domain Ω.
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FIG. 3. (Color online) (a) The snaking region (shaded) inside
which homoclinic snaking is observed in the (k2, D1) parame-
ter plane. (b) Homoclinic snaking; even-solutions branch (yel-
low) and odd-solutions branch (purple), and fold bifurca-
tions (filled circles); bold solid lines indicate stable branches;
D1 = 0.15. (c) Samples of multi-pulse homoclinic stable so-
lutions on the even- and odd-branch for k2 = 1.45, top and
bottom panels respectively, which correspond to 6-spike so-
lution (label A) and 3-spike solution (label B) in (b). The
u-component (solid line) and v-component (dashed line) are
plotted for a domain size L = 100.

There, a vector reduced bifurcation function g can be
computed by projecting onto the eigenspace defined by
modes satisfying the boundary value problem

∇2w + |κ|2w = 0 , (n · ∇)w|∂Ω = 0 .

In computing the scalar function g, we find that triv-
ially gµ(0, 0) = 0 and gµµ(0, 0) = 0, by virtue of the
equilibrium being at the origin and having a zero eigen-
value. Also, owing to the reflection symmetry in x, the
reduced bifurcation function must be odd in z, despite
the presence of quadratic terms in the original equation.

In the parameter region under investigation the
sub/super-criticality of the pitchfork (Hamiltonian–
Hopf) bifurcation is determined by the sign of

σ = q1q3,

see [24]. Figure 2(b) plots σ, as a function of k2 close
to k2c. We have also checked that q1q5 is negative in all
the entire parameter region of interest. The figure also

shows computed bifurcating branches close to the point
where σ changes sign, where we can see a re-stabilising
fold (limit point) in the case of the sub-critical bifurca-
tion.

Now consider variation of a second parameter.
For convenience we choose D1. Figure 3(a) de-
picts a two-parameter bifurcation diagram showing the
Hamiltonian–Hopf bifurcation curve, the codimension-
two point at which σ = 0 and the numerically computed
“snaking region” in which localised states exist in the
(k2, D1) plane. In accordance with the usual analysis
of homoclinic snaking, inside this region there are two
branches of localised states. The states are all invariant
under the reversibility, and at each fold the number of
pulses varies, so that each second successive horizontal-
like branch has two additional large pulses. We remark
that, in contrast to the Swift–Hohenberg equation for ex-
ample, there is no variational structure in the system (8),
which therefore implies there are no asymmetric station-
ary localised states (so-called “ladders” in a “snakes and
ladders” bifurcation diagram).

In addition, we have computed stability of the states
shown in Fig. 3(b) using a standard three-point uniform
finite differences method and an eigenvalue solver. We
have numerically found that stable branches occur simi-
larly to results previously found for the Swift–Hohenberg
system (e.g. [12, 19]) as is shown (solid lines) in Fig. 3(b).
There stable branches lose stability in a fold bifurcation
(filled circles) where branches of solutions with odd and
even numbers of spikes annihilate each other. Examples
of stable solutions are shown in Fig. 3(c); note that num-
ber of spikes correspond to ladder step.

IV. 2D SIMULATION RESULTS

To illustrate that a similar localised pattern formation
mechanism is likely to apply in higher spatial dimensions
we have performed simulations of the same system (8),
on a large square domain with Lx,y = 300. Specifically
we have used a finite difference method implemented in
matlab, with spatial resolution 300 × 300. The compu-
tations were run a long time until steady state reached.
The results are presented in Fig. 4.

We have found a collection of different localised pat-
terns under the conditions of equal source and loss terms
b = r. Samples of these can be seen in Fig. 4(a)-(c).
Taking similar initial conditions that was a 10−2 pertur-
bation from the homogeneous equilibrium (9) resulted in
the two-spot pattern depicted in Fig. 4(a). Taking this
solution as an initial conditions, a slight increase in b
and r resulted in the localised 4-spot pattern depicted in
Fig. 4(b). The dynamics of this process was such that
each spot arises through a form of spot-splitting dynam-
ics [31]. In a similar fashion, we slightly decreased D1

instead. In so doing, a localised 8-spot pattern is ob-
tained from the 4-spot pattern, see Fig. 4(c).

In addition, we also noted that upon performing a sim-
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FIG. 4. (Color online) Stable patterns for a two-dimensional
square domain Lx,y = 300 on a cool-warm scale (side bar).
Localised (a) 2-spot for r = b = 10−4, k2 = 4 × 10−3 and
D1 = 0.13, (b) 4-spot for r = b = 5 × 10−4, (c) 8-spot for
D1 = 0.11, and other parameter values as in (a). (d) 2-stripe:
r = b = 10−4, k2 = 0.6, D1 = 0.1, and Lx,y = 100. Other
parameter values: c = 0.1, h = 10−2 and D2 = 10.

ilar computation but changing b = r or D1 in the other
directions results in a either a completely different form
of spatially extended pattern or no pattern at all. This
suggests that hysteretic behaviour is taking place, which
should be a consequence of an overlapping structure of
stable branches similar to Fig. 3(b).

These patterns, however, are just a few examples of
the spot-like patterns that we were able to find and in-
dicate that the mechanism we have identified is likely to
be robust in higher dimensions. A full exploration in
the spirit of [13–15] though is left for future work. It is
interesting to note though that we were unable to find
any localised patterns for b 6= r. This suggests that well-
balanced source and loss plays an important role in the
(non-variational) pattern formation mechanism under in-
vestigation in higher dimensions.

On the other hand, in Fig. 4(d), a stripe-like pattern
is depicted. We initially obtained a two-spot pattern as
before in a smaller domain, and it was taken as an ini-
tial condition for a second run. In so doing, note that
upon significantly increasing k2 and slightly decreasing
D1 parameter values the two-spot pattern dramatically
changes. Moreover, upon taking this solution as an initial

condition once again but in a much larger domain, a pat-
tern consisting of spots and stripes emerges (not shown).
Patterns as such have been observed in non-homogeneous
domains, see [32, 33]. A further analysis is nevertheless
also left for future work.

V. CONCLUSIONS

In summary, we have shown that canonical reaction-
diffusion systems can generate localised patterns sponta-
neously, which, close to a relevant codimension-two point,
can occur at small amplitude. In particular, taking real-
istic source and loss terms into account can provide con-
ditions for a subcritical Turing bifurcation to occur. Tak-
ing the paradigm of spatial dynamics, on a long domain,
the Turing bifurcation corresponds to where two complex
eigenvalues collide on the imaginary axis (a Hamiltonian–
Hopf bifurcation). In the presence of spatial reversibility,
this provides exactly the right ingredients for the spon-
taneous formation of localised patterns through the so-
called homoclinic snaking mechanism. Note that any re-
alistic physical, chemical or biological systems, especially
those found in nature, are likely to feature such source
and loss terms.

Moreover, as argued more carefully in [34] this method
of pattern formation is likely to be more robust than via
the more traditional supercritical Turing instability, and
hence to be chosen by nature. In the supercritical case,
the pattern is always spatially extended, is born from
zero amplitude and, in long domains is typically sub-
ject to further instabilities through mode interactions.
In contrast for the subcritical Turing bifurcations inves-
tigated here, we find jumps to well-formed, finite ampli-
tude patterns that are localised in the spatial domain.
Due to the hysteretic nature of fold bifurcations seen in
the snaking bifurcation branch, small fluctuations in pa-
rameter values or small stochastic perturbations of the
kinetics would not typically destroy the localised pattern.
In addition, the presence of a weak spatial inhomogene-
ity will result in bifurcation diagram similar to that in
Fig. 3(b), but slanted so that the folds of the snake occur
at different values—results not shown. For example [34]
considers the system (8), in a different parameter regime,
in a long (but finite) domain in 1D with a spatial gradi-
ent multiplying the bifurcation parameter k2. The result
is reminiscent of a finite portion of a slanted snake bifur-
cation diagram where the patterns with a higher num-
ber of spots occur for higher k2-values. This can be ex-
plained using the concept of slanted snaking established
by Dawes [35], where in this case the spatial gradient is
replaced by a scalar field that is neutrally stable. We
therefore believe the mechanism we have uncovered will
prove important in explaining and predicting observa-
tions of localised patterns in certain a wide variety of
physical systems, see for example [3], and will only be
accentuated by spatial homogeneity.
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